Dec 10 2025

ISO 42001 and the Business Imperative for AI Governance

Category: AI,AI Governance,Information Security,ISO 42001disc7 @ 12:45 pm

1. Regulatory Compliance Has Become a Minefield—With Real Penalties

Regulatory Compliance Has Become a Minefield—With Real Penalties

Organizations face an avalanche of overlapping AI regulations (EU AI Act, GDPR, HIPAA, SOX, state AI laws) with zero tolerance for non-compliance. The EU AI Act explicitly recognizes ISO 42001 as evidence of conformity—making certification the fastest path to regulatory defensibility. Without systematic AI governance, companies face six-figure fines, contract terminations, and regulatory scrutiny.

2. Vendor Questionnaires Are Killing Deals

Every enterprise RFP now includes AI governance questions. Procurement teams demand documented proof of bias mitigation, human oversight, and risk management frameworks. Companies without ISO 42001 or equivalent certification are being disqualified before technical evaluations even begin. Lost deals aren’t hypothetical—they’re happening every quarter.

3. Boards Demand AI Accountability—Security Teams Can’t Deliver Alone

C-suite executives face personal liability for AI failures. They’re demanding comprehensive AI risk management across 7 critical impact categories (safety, fundamental rights, legal compliance, reputational risk). But CISOs and compliance officers lack AI-specific expertise to build these frameworks from scratch. Generic security controls don’t address model drift, training data contamination, or algorithmic bias.

4. The “DIY Governance” Death Spiral

Organizations attempting in-house ISO 42001 implementation waste 12-18 months navigating 18 specific AI controls, conducting risk assessments across 42+ scenarios, establishing monitoring systems, and preparing for third-party audits. Most fail their first audit and restart at 70% budget overrun. They’re paying the certification cost twice—plus the opportunity cost of delayed revenue.

5. “Certification Theater” vs. Real Implementation—And They Can’t Tell the Difference

Companies can’t distinguish between consultants who’ve read the standard vs. those who’ve actually implemented and passed audits in production environments. They’re terrified of paying for theoretical frameworks that collapse under audit scrutiny. They need proven methodologies with documented success—not PowerPoint governance.

6. High-Risk Industry Requirements Are Non-Negotiable

Financial services (credit scoring, AML), healthcare (clinical decision support), and legal firms (judicial AI) face sector-specific AI regulations that generic consultants can’t address. They need consultants who understand granular compliance scenarios—not surface-level AI ethics training.


DISC Turning AI Governance Into Measurable Business Value

  • Compressed timelines (6-9 months )
  • First-audit pass rates (avoiding remediation costs)
  • Revenue protection (winning contracts that require certified AI governance)
  • Regulatory defensibility (documented evidence that satisfies auditors and regulators)
  • Pioneer-practitioner expertise (ShareVault implementation proves you’ve solved problems they’re facing)

DISC Infosec implementation experience transforms their consultant from “compliance consultant” to “business risk eliminator.”

AI Governance Gap Assessment tool

  1. 15 questions
  2. Instant maturity score 
  3. Detailed PDF report 
  4. Top 3 priority gaps

Click  below to open an AI Governance Gap Assessment in your browser or click the image on the left side to start assessment.

ai_governance_assessment-v1.5Download

Built by AI governance experts. Used by compliance leaders.


Dec 08 2025

Emerging Tools & Frameworks for AI Governance & Security Testing

garak — LLM Vulnerability Scanner / Red-Teaming Kit

  • garak (Generative AI Red-teaming & Assessment Kit) is an open-source tool aimed specifically at testing Large Language Models and dialog systems for AI-specific vulnerabilities: prompt injection, jailbreaks, data leakage, hallucinations, toxicity, etc.
  • It supports many LLM sources: Hugging Face models, OpenAI APIs, AWS Bedrock, local ggml models, etc.
  • Typical usage is via command line, making it relatively easy to incorporate into a Linux/pen-test workflow.
  • For someone interested in “governance,” garak helps identify when an AI system violates safety, privacy or compliance expectations before deployment.

BlackIce — Containerized Toolkit for AI Red-Teaming & Security Testing

  • BlackIce is described as a standardized, containerized red-teaming toolkit for both LLMs and classical ML models. The idea is to lower the barrier to entry for AI security testing by packaging many tools into a reproducible Docker image.
  • It bundles a curated set of open-source tools (as of late 2025) for “Responsible AI and Security testing,” accessible via a unified CLI interface — akin to how Kali bundles network-security tools.
  • For governance purposes: BlackIce simplifies running comprehensive AI audits, red-teaming, and vulnerability assessments in a consistent, repeatable environment — useful for teams wanting to standardize AI governance practices.

LibVulnWatch — Supply-Chain & Library Risk Assessment for AI Projects

  • While not specific to LLM runtime security, LibVulnWatch focuses on evaluating open-source AI libraries (ML frameworks, inference engines, agent-orchestration tools) for security, licensing, supply-chain, maintenance and compliance risks.
  • It produces governance-aligned scores across multiple domains, helping organizations choose safer dependencies and keep track of underlying library health over time.
  • For an enterprise building or deploying AI: this kind of tool helps verify that your AI stack — not just the model — meets governance, audit, and risk standards.

Giskard (open-source / enterprise) — LLM Red-Teaming & Monitoring for Safety/Compliance

  • Giskard offers LLM vulnerability scanning and red-teaming capabilities (prompt injection, data leakage, unsafe behavior, bias, etc.) via both an open-source library and an enterprise “Hub” for production-grade systems.
  • It supports “black-box” testing: you don’t need internal access to the model — as long as you have an API or interface, you can run tests.
  • For AI governance, Giskard helps in evaluating compliance with safety, privacy, and fairness standards before and after deployment.

🔧 What This Means for Kali Linux / Pen-Test-Oriented Workflows

  • The emergence of tools like garak, BlackIce, and Giskard shows that AI governance and security testing are becoming just as “testable” as traditional network or system security. For people familiar with Kali’s penetration-testing ecosystem — this is a familiar, powerful shift.
  • Because they are Linux/CLI-friendly and containerizable (especially BlackIce), they can integrate neatly into security-audit pipelines, continuous-integration workflows, or red-team labs — making them practical beyond research or toy use.
  • Using a supply-chain-risk tool like LibVulnWatch alongside model-level scanners gives a more holistic governance posture: not just “Is this LLM safe?” but “Is the whole AI stack (dependencies, libraries, models) reliable and auditable?”

⚠️ A Few Important Caveats (What They Don’t Guarantee)

  • Tools like garak and Giskard attempt to find common issues (jailbreaks, prompt injection, data leakage, harmful outputs), but cannot guarantee absolute safety or compliance — because many risks (e.g. bias, regulatory compliance, ethics, “unknown unknowns”) depend heavily on context (data, environment, usage).
  • Governance is more than security: It includes legal compliance, privacy, fairness, ethics, documentation, human oversight — many of which go beyond automated testing.
  • AI-governance frameworks are still evolving; even red-teaming tools may lag behind novel threat types (e.g. multi-modality, chain-of-tool-calls, dynamic agentic behaviors).

🎯 My Take / Recommendation (If You Want to Build an AI-Governance Stack Now)

If I were you and building or auditing an AI system today, I’d combine these tools:

  • Start with garak or Giskard to scan model behavior for injection, toxicity, privacy leaks, etc.
  • Use BlackIce (in a container) for more comprehensive red-teaming including chaining tests, multi-tool or multi-agent flows, and reproducible audits.
  • Run LibVulnWatch on your library dependencies to catch supply-chain or licensing risks.
  • Complement that with manual reviews, documentation, human-in-the-loop audits and compliance checks (since automated tools only catch a subset of governance concerns).

🧠 AI Governance & Security Lab Stack (2024–2025)

1️⃣ LLM Vulnerability Scanning & Red-Teaming (Core Layer)

These are your “nmap + metasploit” equivalents for LLMs.

garak (NVIDIA)

  • Automated LLM red-teaming
  • Tests for jailbreaks, prompt injection, hallucinations, PII leaks, unsafe outputs
  • CLI-driven → perfect for Kali workflows
    Baseline requirement for AI audits

Giskard (Open Source / Enterprise)

  • Structured LLM vulnerability testing (multi-turn, RAG, tools)
  • Bias, reliability, hallucination, safety checks
    Strong governance reporting angle

promptfoo

  • Prompt, RAG, and agent testing framework
  • CI/CD friendly, regression testing
    Best for continuous governance

AutoRed

  • Automatically generates adversarial prompts (no seeds)
  • Excellent for discovering unknown failure modes
    Advanced red-team capability

RainbowPlus

  • Evolutionary adversarial testing (quality + diversity)
  • Better coverage than brute-force prompt testing
    Research-grade robustness testing

2️⃣ Benchmarks & Evaluation Frameworks (Evidence Layer)

These support objective governance claims.

HarmBench

  • Standardized harm/safety benchmark
  • Measures refusal correctness, bypass resistance
    Great for board-level reporting

OpenAI / Anthropic Safety Evals (Open Specs)

  • Industry-accepted evaluation criteria
    Aligns with regulator expectations

HELM / BIG-Bench (Selective usage)

  • Model behavior benchmarking
    ⚠️ Use carefully — not all metrics are governance-relevant

3️⃣ Prompt Injection & Agent Security (Runtime Protection)

This is where most AI systems fail in production.

LlamaFirewall

  • Runtime enforcement for tool-using agents
  • Prevents prompt injection, tool abuse, unsafe actions
    Critical for agentic AI

NeMo Guardrails

  • Rule-based and model-assisted controls
    Good for compliance-driven orgs

Rebuff

  • Prompt-injection detection & prevention
    Lightweight, practical defense

4️⃣ Infrastructure & Deployment Security (Kali-Adjacent)

This is often ignored — and auditors will catch it.

AI-Infra-Guard (Tencent)

  • Scans AI frameworks, MCP servers, model infra
  • Includes jailbreak testing + infra CVEs
    Closest thing to “Nessus for AI”

Trivy

  • Container + dependency scanning
    Use on AI pipelines and inference containers

Checkov

  • IaC scanning (Terraform, Kubernetes, cloud AI services)
    Cloud AI governance

5️⃣ Supply Chain & Model Provenance (Governance Backbone)

Auditors care deeply about this.

LibVulnWatch

  • AI/ML library risk scoring
  • Licensing, maintenance, vulnerability posture
    Perfect for vendor risk management

OpenSSF Scorecard

  • OSS project security maturity
    Mirror SBOM practices

Model Cards / Dataset Cards (Meta, Google standards)

  • Manual but essential
    Regulatory expectation

6️⃣ Data Governance & Privacy Risk

AI governance collapses without data controls.

Presidio

  • PII detection/anonymization
    GDPR, HIPAA alignment

Microsoft Responsible AI Toolbox

  • Error analysis, fairness, interpretability
    Human-impact governance

WhyLogs

  • Data drift & data quality monitoring
    Operational governance

7️⃣ Observability, Logging & Auditability

If it’s not logged, it doesn’t exist to auditors.

OpenTelemetry (LLM instrumentation)

  • Trace model prompts, outputs, tool calls
    Explainability + forensics

LangSmith / Helicone

  • LLM interaction logging
    Useful for post-incident reviews

8️⃣ Policy, Controls & Governance Mapping (Human Layer)

Tools don’t replace governance — they support it.

ISO/IEC 42001 Control Mapping

  • AI management system
    Enterprise governance standard

NIST AI RMF

  • Risk identification & mitigation
    US regulator alignment

DASF / AICM (AI control models)

  • Control-oriented governance
    vCISO-friendly frameworks

🔗 How This Fits into Kali Linux

Kali doesn’t yet ship AI governance tools by default — but:

  • ✅ Almost all of these run on Linux
  • ✅ Many are CLI-based or Dockerized
  • ✅ They integrate cleanly with red-team labs
  • ✅ You can easily build a custom Kali “AI Governance profile”

My recommendation:
Create:

  • A Docker compose stack for garak + Giskard + promptfoo
  • A CI pipeline for prompt & agent testing
  • A governance evidence pack (logs + scores + reports)

Map each tool to ISO 42001 / NIST AI RMF controls

below is a compact, actionable mapping that connects the ~10 tools we discussed to ISO/IEC 42001 clauses (high-level AI management system requirements) and to the NIST AI RMF Core functions (GOVERN / MAP / MEASURE / MANAGE).
I cite primary sources for the standards and each tool so you can follow up quickly.

Notes on how to read the table
ISO 42001 — I map to the standard’s high-level clauses (Context (4), Leadership (5), Planning (6), Support (7), Operation (8), Performance evaluation (9), Improvement (10)). These are the right level for mapping tools into an AI Management System. Cloud Security Alliance+1
NIST AI RMF — I use the Core functions: GOVERN / MAP / MEASURE / MANAGE (the AI RMF core and its intended outcomes). Tools often map to multiple functions. NIST Publications
• Each row: tool → primary ISO clauses it supports → primary NIST functions it helps with → short justification + source links.

Tool → ISO 42001 / NIST AI RMF mapping

1) Giskard (open-source + platform)

  • ISO 42001: 7 Support (competence, awareness, documented info), 8 Operation (controls, validation & testing), 9 Performance evaluation (testing/metrics). Cloud Security Alliance+1
  • NIST AI RMF: MEASURE (testing, metrics, evaluation), MAP (identify system behavior & risks), MANAGE (remediation actions). NIST Publications+1
  • Why: Giskard automates model testing (bias, hallucination, security checks) and produces evidence/metrics used in audits and continuous evaluation. GitHub

2) promptfoo (prompt & RAG test suite / CI integration)

  • ISO 42001: 7 Support (documented procedures, competence), 8 Operation (validation before deployment), 9 Performance evaluation (continuous testing). Cloud Security Alliance
  • NIST AI RMF: MEASURE (automated tests), MANAGE (CI/CD enforcement, remediation), MAP (describe prompt-level risks). GitHub+1
  • Why: promptfoo provides automated prompt tests, integrates into CI (pre-deployment gating) and produces test artifacts for governance traceability. GitHub+1

3) AI-Infra-Guard (Tencent A.I.G)

  • ISO 42001: 6 Planning (risk assessment), 7 Support (infrastructure), 8 Operation (secure deployment), 9 Performance evaluation (vulnerability scanning reports). Cloud Security Alliance+1
  • NIST AI RMF: MAP (asset & infrastructure risk mapping), MEASURE (vulnerability detection, CVE checks), MANAGE (remediation workflows). NIST Publications+1
  • Why: A.I.G scans AI infra, fingerprints components, and includes jailbreak evaluation — key for supply-chain and infra controls. GitHub

4) LlamaFirewall (runtime guardrail / agent monitor)

  • ISO 42001: 8 Operation (runtime controls / enforcement), 7 Support (monitoring tooling), 9 Performance evaluation (runtime monitoring metrics). Cloud Security Alliance+1
  • NIST AI RMF: MANAGE (runtime risk controls), MEASURE (monitoring & detection), MAP (runtime threat vectors). NIST Publications+1
  • Why: LlamaFirewall is explicitly designed as a last-line runtime guardrail for agentic systems — enforcing policies and detecting task-drift/prompt injection at runtime. arXiv

5) LibVulnWatch (supply-chain & lib risk assessment)

  • ISO 42001: 6 Planning (risk assessment), 7 Support (SBOMs, supplier controls), 8 Operation (secure build & deploy), 9 Performance evaluation (dependency health). Cloud Security Alliance+1
  • NIST AI RMF: MAP (supply-chain mapping & dependency inventory), MEASURE (vulnerability & license metrics), MANAGE (mitigation/prioritization). NIST Publications+1
  • Why: LibVulnWatch performs deep, evidence-backed evaluations of AI/ML libraries (CVEs, SBOM gaps, licensing) — directly supporting governance over the supply chain. arXiv+1

6) AutoRed / RainbowPlus (automated adversarial prompt generation & evolutionary red-teaming)

  • ISO 42001: 8 Operation (adversarial testing), 9 Performance evaluation (benchmarks & stress tests), 10 Improvement (feed results back to controls). Cloud Security Alliance
  • NIST AI RMF: MEASURE (adversarial performance metrics), MAP (expose attack surface), MANAGE (prioritize fixes based on attack impact). NIST Publications+2arXiv+2
  • Why: These tools expand coverage of red-team tests (free-form and evolutionary adversarial prompts), surfacing edge failures and jailbreaks that standard tests miss. arXiv+1

7) Meta SecAlign (safer model / model-level defenses)

  • ISO 42001: 8 Operation (safe model selection/deployment), 6 Planning (risk-aware model selection), 7 Support (model documentation). Cloud Security Alliance+1
  • NIST AI RMF: MAP (model risk characteristics), MANAGE (apply safer model choices / mitigations), MEASURE (evaluate defensive effectiveness). NIST Publications+1
  • Why: A “safer” model built to resist manipulation maps directly to operational and planning controls where the organization chooses lower-risk building blocks. arXiv

8) HarmBench (benchmarks for safety & robustness testing)

  • ISO 42001: 9 Performance evaluation (standardized benchmarks), 8 Operation (validation against benchmarks), 10 Improvement (continuous improvement from results). Cloud Security Alliance
  • NIST AI RMF: MEASURE (standardized metrics & benchmarks), MAP (compare risk exposure across models), MANAGE (feed measurement results into mitigation plans). NIST Publications
  • Why: Benchmarks are the canonical way to measure and compare model trustworthiness and to demonstrate compliance in audits. arXiv

9) Collections / “awesome” lists (ecosystem & resource aggregation)

  • ISO 42001: 5 Leadership & 7 Support (policy, competence, awareness — guidance & training resources). Cloud Security Alliance
  • NIST AI RMF: GOVERN (policy & stakeholder guidance), MAP (inventory of recommended tools & practices). NIST Publications
  • Why: Curated resources help leadership define policy, identify tools, and set organizational expectations — foundational for any AI management system. Cyberzoni.com

Quick recommendations for operationalizing the mapping

  1. Create a minimal mapping table inside your ISMS (ISO 42001) that records: tool name → ISO clause(s) it supports → NIST function(s) it maps to → artifact(s) produced (reports, SBOMs, test results). This yields audit-ready evidence. (ISO42001 + NIST suggestions above).
  2. Automate evidence collection: integrate promptfoo / Giskard into CI so that each deployment produces test artifacts (for ISO 42001 clause 9).
  3. Supply-chain checks: run LibVulnWatch and AI-Infra-Guard periodically to populate SBOMs and vulnerability dashboards (helpful for ISO 7 & 6).
  4. Runtime protections: embed LlamaFirewall or runtime monitors for agentic systems to satisfy operational guardrail requirements.
  5. Adversarial coverage: schedule periodic automated red-teaming using AutoRed / RainbowPlus / HarmBench to measure resilience and feed results into continual improvement (ISO clause 10).

Download 👇 AI Governance Tool Mapping

InfoSec services | ISMS Services | AIMS Services | InfoSec books | Follow our blog | DISC llc is listed on The vCISO Directory | ISO 27k Chat bot | Comprehensive vCISO Services | Security Risk Assessment Services | Mergers and Acquisition Security

At DISC InfoSec, our AI Governance services go beyond traditional security. We help organizations ensure legal compliance, privacy, fairness, ethics, proper documentation, and human oversight — addressing the full spectrum of responsible AI practices, many of which cannot be achieved through automated testing alone.

Tags: AI Governance, AI Governance & Security Testing


Dec 08 2025

Why Security Consultants Rely on Burp Suite Professional for Web App Assessments

Here are some of the main benefits of using Burp Suite Professional — specifically from the perspective of a professional services consultant doing security assessments, penetration testing, or audits for clients. I highlight where Burp Pro gives real value in a professional consulting context.

✅ Why consultants often prefer Burp Suite Professional

  • Comprehensive, all-in-one toolkit for web-app testing
    Burp Pro bundles proxying, crawling/spidering, vulnerability scanning, request replay/manipulation, fuzzing/brute forcing, token/sequence analysis, and more — all in a single product. This lets a consultant perform full-scope web application assessments without needing to stitch together many standalone tools.
  • Automated scanning + manual testing — balanced for real-world audits
    As a consultant you often need to combine speed (to scan large or complex applications) and depth (to manually investigate subtle issues or business-logic flaws). Burp Pro’s automated scanner quickly highlights many common flaws (e.g. SQLi, XSS, insecure configs), while its manual tools (proxy, repeater, intruder, etc.) allow fine-grained verification and advanced exploitation.
  • Discovery of “hidden” or non-obvious issues / attack surfaces
    The crawler/spider + discovery features help map out a target application’s entire attack surface — including hidden endpoints, unlinked pages or API endpoints — which consultants need to find when doing thorough security reviews.
  • Flexibility for complex or modern web apps (APIs, SPAs, WebSockets, etc.)
    Many modern applications use single-page frameworks, APIs, WebSockets, token-based auth, etc. Burp Pro supports testing these complex setups (e.g. handling HTTPS, WebSockets, JSON APIs), enabling consultants to operate effectively even on modern, dynamic web applications.
  • Extensibility and custom workflows tailored to client needs
    Through the built-in extension store (the “BApp Store”), and via scripting/custom plugins, consultants can customize Burp Pro to fit the unique architecture or threat model of a client’s environment — which is crucial in professional consulting where every client is different.
  • Professional-grade reporting & audit deliverables
    Consultants often need to deliver clear, structured, prioritized vulnerability reports to clients or stakeholders. Burp Pro supports detailed reporting, with evidence, severity, context — making it easier to communicate findings and remediation steps.
  • Efficiency and productivity: saves time and resources
    By automating large parts of scanning and combining multiple tools in one, Burp Pro helps consultants complete engagements faster — freeing time for deeper manual analysis, more clients, or more thorough work.
  • Up-to-date detection logic and community / vendor support
    As new web-app vulnerabilities and attack vectors emerge, Burp Pro (supported by its vendor and community) gets updates and new detection logic — which helps consultants stay current and offer reliable security assessments.

🚨 React2Shell detection is now available in Burp Suite Professional & Burp Suite DAST.

The critical React/Next.js vulnerability (CVE-2025-55182 / 66478) is circulating fast. You can already detect

🎯 What this enables in a Consulting / Professional Services Context

Using Burp Suite Professional allows a consultant to:

  • Provide comprehensive security audits covering a broad attack surface — from standard web pages to APIs, dynamic front-ends, and even modern client-side logic.
  • Combine fast automated scanning with deep manual review, giving confidence that both common and subtle or business-logic vulnerabilities are identified.
  • Deliver clear, actionable reports and remediation guidance — a must when working with clients or stakeholders who need to understand risk and prioritize fixes.
  • Adapt quickly to different client environments — thanks to extensions, custom workflows, and configurability.
  • Scale testing work: for example, map and scan large applications efficiently, then focus consultant time on validating and exploiting deeper issues rather than chasing basic ones.
  • Maintain a professional standard of work — many clients expect usage of recognized tools, reproducible evidence, and thorough testing, all of which Burp Pro supports.

✅ Summary — Pro version pays off in consulting work

For a security consultant, Burp Suite Professional isn’t just a “nice to have” — it often becomes a core piece of the toolset. Its mix of automation, manual flexibility, extensibility, and reporting makes it highly suitable for professional-grade penetration testing, audits, and security assessments. While there are other tools out there, the breadth and polish of Burp Pro tends to make it “default standard” in many consulting engagements.

At DISC InfoSec, we provide comprehensive security audits that cover your entire digital attack surface — from standard web pages to APIs, dynamic front-ends, and even modern client-side logic. Our expert team not only identifies vulnerabilities but also delivers a tailored mitigation plan designed to reduce risks and provide assurance against potential security incidents. With DISC InfoSec, you gain the confidence that your applications and data are protected, while staying ahead of emerging threats.

InfoSec services | ISMS Services | AIMS Services | InfoSec books | Follow our blog | DISC llc is listed on The vCISO Directory | ISO 27k Chat bot | Comprehensive vCISO Services | Security Risk Assessment Services | Mergers and Acquisition Security

Tags: BURP Pro, Burp Suite Professional, DISC InfoSec, React2Shell


Dec 05 2025

Are AI Companies Protecting Humanity? The Latest Scorecard Says No

The article reports on a new “safety report card” assessing how well leading AI companies are doing at protecting humanity from the risks posed by powerful artificial-intelligence systems. The report was issued by Future of Life Institute (FLI), a nonprofit that studies existential threats and promotes safe development of emerging technologies.

This “AI Safety Index” grades companies based on 35 indicators across six domains — including existential safety, risk assessment, information sharing, governance, safety frameworks, and current harms.

In the latest (Winter 2025) edition of the index, no company scored higher than a “C+.” The top-scoring companies were Anthropic and OpenAI, followed by Google DeepMind.

Other firms, including xAI, Meta, and a few Chinese AI companies, scored D or worse.

A key finding is that all evaluated companies scored poorly on “existential safety” — which covers whether they have credible strategies, internal monitoring, and controls to prevent catastrophic misuse or loss of control as AI becomes more powerful.

Even though companies like OpenAI and Google DeepMind say they’re committed to safety — citing internal research, safeguards, testing with external experts, and safety frameworks — the report argues that public information and evidence remain insufficient to demonstrate real readiness for worst-case scenarios.

For firms such as xAI and Meta, the report highlights a near-total lack of evidence about concrete safety investments beyond minimal risk-management frameworks. Some companies didn’t respond to requests for comment.

The authors of the index — a panel of eight independent AI experts including academics and heads of AI-related organizations — emphasize that we’re facing an industry that remains largely unregulated in the U.S. They warn this “race to the bottom” dynamic discourages companies from prioritizing safety when profitability and market leadership are at stake.

The report suggests that binding safety standards — not voluntary commitments — may be necessary to ensure companies take meaningful action before more powerful AI systems become a reality.

The broader context: as AI systems play larger roles in society, their misuse becomes more plausible — from facilitating cyberattacks, enabling harmful automation, to even posing existential threats if misaligned superintelligent AI were ever developed.

In short: according to the index, the AI industry still has a long way to go before it can be considered truly “safe for humanity,” even among its most prominent players.


My Opinion

I find the results of this report deeply concerning — but not surprising. The fact that even the top-ranked firms only get a “C+” strongly suggests that current AI safety efforts are more symbolic than sufficient. It seems like companies are investing in safety only at a surface level (e.g., statements, frameworks), but there’s little evidence they are preparing in a robust, transparent, and enforceable way for the profound risks AI could pose — especially when it comes to existential threats or catastrophic misuse.

The notion that an industry with such powerful long-term implications remains essentially unregulated feels reckless. Voluntary commitments and internal policies can easily be overridden by competitive pressure or short-term financial incentives. Without external oversight and binding standards, there’s no guarantee safety will win out over speed or profits.

That said, the fact that the FLI even produces this index — and that two firms get a “C+” — shows some awareness and effort towards safety. It’s better than nothing. But awareness must translate into real action: rigorous third-party audits, transparent safety testing, formal safety requirements, and — potentially — regulation.

In the end, I believe society should treat AI much like we treat high-stakes technologies such as nuclear power: with caution, transparency, and enforceable safety norms. It’s not enough to say “we care about safety”; firms must prove they can manage the long-term consequences, and governments and civil society need to hold them accountable.

InfoSec services | ISMS Services | AIMS Services | InfoSec books | Follow our blog | DISC llc is listed on The vCISO Directory | ISO 27k Chat bot | Comprehensive vCISO Services | Security Risk Assessment Services | Mergers and Acquisition Security

Tags: AI Safety, AI Scorecard


Dec 02 2025

Governance & Security for AI Plug-Ins – vCISO Playbook

In a recent report, researchers at Cato Networks revealed that the “Skills” plug‑in feature of Claude — the AI system developed by Anthropic — can be trivially abused to deploy ransomware.

The exploit involved taking a legitimate, open‑source plug‑in (a “GIF Creator” skill) and subtly modifying it: by inserting a seemingly harmless function that downloads and executes external code, the modified plug‑in can pull in a malicious script (in this case, ransomware) without triggering warnings.

When a user installs and approves such a skill, the plug‑in gains persistent permissions: it can read/write files, download further code, and open outbound connections, all without any additional prompts. That “single‑consent” permission model creates a dangerous consent gap.

In the demonstration by Cato Networks researcher Inga Cherny, they didn’t need deep technical skill — they simply edited the plug‑in, re-uploaded it, and once a single employee approved it, ransomware (specifically MedusaLocker) was deployed. Cherny emphasized that “anyone can do it — you don’t even have to write the code.”

Microsoft and other security watchers have observed that MedusaLocker belongs to a broader, active family of ransomware that has targeted numerous organizations globally, often via exploited vulnerabilities or weaponized tools.

This event marks a disturbing evolution in AI‑related cyber‑threats: attackers are moving beyond simple prompt‑based “jailbreaks” or phishing using generative AI — now they’re hijacking AI platforms themselves as delivery mechanisms for malware, turning automation tools into attack vectors.

It’s also a wake-up call for corporate IT and security teams. As more development teams adopt AI plug‑ins and automation workflows, there’s a growing risk that something as innocuous as a “productivity tool” could conceal a backdoor — and once installed, bypass all typical detection mechanisms under the guise of “trusted” software.

Finally, while the concept of AI‑driven attacks has been discussed for some time, this proof‑of-concept exploit shifts the threat from theoretical to real. It demonstrates how easily AI systems — even those with safety guardrails — can be subverted to perform malicious operations when trust is misplaced or oversight is lacking.


🧠 My Take

This incident highlights a fundamental challenge: as we embrace AI for convenience and automation, we must not forget that the same features enabling productivity can be twisted into attack vectors. The “single‑consent” permission model underlying many AI plug‑ins seems especially risky — once that trust is granted, there’s little transparency about what happens behind the scenes.

In my view, organizations using AI–enabled tools should treat them like any other critical piece of infrastructure: enforce code review, restrict who can approve plug‑ins, and maintain strict operational oversight. For people like you working in InfoSec and compliance — especially in small/medium businesses like wineries — this is a timely reminder: AI adoption must be accompanied by updated governance and threat models, not just productivity gains.

Below is a checklist of security‑best practices (for companies and vCISOs) to guard against misuse of AI plug‑ins — could be a useful to assess your current controls.

https://www.wired.com/story/the-era-of-ai-generated-ransomware-has-arrived

Safeguard organizational assets by managing risks associated with AI plug-ins (e.g., Claude Skills, GPT Tools, other automation plug-ins)

InfoSec services | ISMS Services | AIMS Services | InfoSec books | Follow our blog | DISC llc is listed on The vCISO Directory | ISO 27k Chat bot | Comprehensive vCISO Services | Security Risk Assessment Services | Mergers and Acquisition Security

Governance in The Age of Gen AI: A Director’s Handbook on Gen AI

Tags: AI Plug-Ins, vCISO


Dec 01 2025

ISO 42001 + ISO 27001: Unified Governance for Secure and Responsible AI

Category: AI Governance,Information Security,ISO 27k,ISO 42001disc7 @ 2:35 pm

AIMS to ISMS

As organizations increasingly adopt AI technologies, integrating an Artificial Intelligence Management System (AIMS) into an existing Information Security Management System (ISMS) is becoming essential. This approach aligns with ISO/IEC 42001:2023 and ensures that AI risks, governance needs, and operational controls blend seamlessly with current security frameworks.

The document emphasizes that AI is no longer an isolated technology—its rapid integration into business processes demands a unified framework. Adding AIMS on top of ISMS avoids siloed governance and ensures structured oversight over AI-driven tools, models, and decision workflows.

Integration also allows organizations to build upon the controls, policies, and structures they already have under ISO 27001. Instead of starting from scratch, they can extend their risk management, asset inventories, and governance processes to include AI systems. This reduces duplication and minimizes operational disruption.

To begin integration, organizations should first define the scope of AIMS within the ISMS. This includes identifying all AI components—LLMs, ML models, analytics engines—and understanding which teams use or develop them. Mapping interactions between AI systems and existing assets ensures clarity and complete coverage.

Risk assessments should be expanded to include AI-specific threats such as bias, adversarial attacks, model poisoning, data leakage, and unauthorized “Shadow AI.” Existing ISO 27005 or NIST RMF processes can simply be extended with AI-focused threat vectors, ensuring a smooth transition into AIMS-aligned assessments.

Policies and procedures must be updated to reflect AI governance requirements. Examples include adding AI-related rules to acceptable use policies, tagging training datasets in data classification, evaluating AI vendors under third-party risk management, and incorporating model versioning into change controls. Creating an overarching AI Governance Policy helps tie everything together.

Governance structures should evolve to include AI-specific roles such as AI Product Owners, Model Risk Managers, and Ethics Reviewers. Adding data scientists, engineers, legal, and compliance professionals to ISMS committees creates a multidisciplinary approach and ensures AI oversight is not handled in isolation.

AI models must be treated as formal assets in the organization. This means documenting ownership, purpose, limitations, training datasets, version history, and lifecycle management. Managing these through existing ISMS change-management processes ensures consistent governance over model updates, retraining, and decommissioning.

Internal audits must include AI controls. This involves reviewing model approval workflows, bias-testing documentation, dataset protection, and the identification of Shadow AI usage. AI-focused audits should be added to the existing ISMS schedule to avoid creating parallel or redundant review structures.

Training and awareness programs should be expanded to cover topics like responsible AI use, prompt safety, bias, fairness, and data leakage risks. Practical scenarios—such as whether sensitive information can be entered into public AI tools—help employees make responsible decisions. This ensures AI becomes part of everyday security culture.


Expert Opinion (AI Governance / ISO Perspective)

Integrating AIMS into ISMS is not just efficient—it’s the only logical path forward. Organizations that already operate under ISO 27001 can rapidly mature their AI governance by extending existing controls instead of building a separate framework. This reduces audit fatigue, strengthens trust with regulators and customers, and ensures AI is deployed responsibly and securely. ISO 42001 and ISO 27001 complement each other exceptionally well, and organizations that integrate early will be far better positioned to manage both the opportunities and the risks of rapidly advancing AI technologies.

10-page ISO 42001 + ISO 27001 AI Risk Scorecard PDF

The 47 AI specific Controls You’re Missing…

InfoSec services | ISMS Services | AIMS Services | InfoSec books | Follow our blog | DISC llc is listed on The vCISO Directory | ISO 27k Chat bot | Comprehensive vCISO Services | Security Risk Assessment Services | Mergers and Acquisition Security

Tags: AIMS, isms


Nov 20 2025

ISO 27001 Certified? You’re Missing 47 AI Controls That Auditors Are Now Flagging

🚨 If you’re ISO 27001 certified and using AI, you have 47 control gaps.

And auditors are starting to notice.

Here’s what’s happening right now:

→ SOC 2 auditors asking “How do you manage AI model risk?” (no documented answer = finding)

→ Enterprise customers adding AI governance sections to vendor questionnaires

→ EU AI Act enforcement starting in 2025 → Cyber insurance excluding AI incidents without documented controls

ISO 27001 covers information security. But if you’re using:

  • Customer-facing chatbots
  • Predictive analytics
  • Automated decision-making
  • Even GitHub Copilot

You need 47 additional AI-specific controls that ISO 27001 doesn’t address.

I’ve mapped all 47 controls across 7 critical areas: ✓ AI System Lifecycle Management ✓ Data Governance for AI ✓ Model Risk & Testing ✓ Transparency & Explainability ✓ Human Oversight & Accountability ✓ Third-Party AI Management
✓ AI Incident Response

Full comparison guide → iso_comparison_guide

#AIGovernance #ISO42001 #ISO27001 #SOC2 #Compliance

InfoSec services | ISMS Services | AIMS Services | InfoSec books | Follow our blog | DISC llc is listed on The vCISO Directory | ISO 27k Chat bot | Comprehensive vCISO Services | Security Risk Assessment Services | Mergers and Acquisition Security

Tags: AI controls, ISo 27001 Certified


Nov 15 2025

Security Isn’t Important… Until It Is

Category: CISO,Information Security,Security Awareness,vCISOdisc7 @ 1:19 pm

🔥 Truth bomb from a experience: You can’t make companies care about security.

Most don’t—until they get burned.

Security isn’t important… until it suddenly is. And by then, it’s often too late. Just ask the businesses that disappeared after a cyberattack.

Trying to convince someone it matters? Like telling your friend to eat healthy—they won’t care until a personal wake-up call hits.

Here’s the smarter play: focus on the people who already value security. Show them why you’re the one who can solve their problems. That’s where your time actually pays off.

Your energy shouldn’t go into preaching; it should go into actionable impact for those ready to act.

⏳ Remember: people only take security seriously when they decide it’s worth it. Your job is to be ready when that moment comes.

Opinion:
This perspective is spot-on. Security adoption isn’t about persuasion; it’s about timing and alignment. The most effective consultants succeed not by preaching to the uninterested, but by identifying those who already recognize risk and helping them act decisively.

#CyberSecurity #vCISO #RiskManagement #AI #CyberResilience #SecurityStrategy #Leadership #Infosec

ISO 27001 assessment → Gap analysis → Prioritized remediation → See your risks immediately with a clear path from gaps to remediation.

Start your assessment today — simply click the image on above to complete your payment and get instant access – Evaluate your organization’s compliance with mandatory ISMS clauses through our 5-Level Maturity Model — until the end of this month.

Let’s review your assessment results— Contact us for actionable instructions for resolving each gap.

InfoSec Policy Assistance – Chatbot for a specific use case (policy Q&A, phishing training, etc.)

infosec-chatbot

Click above to open it in any web browser

Why Cybersecurity Fails in America

InfoSec services | InfoSec books | Follow our blog | DISC llc is listed on The vCISO Directory | ISO 27k Chat bot | Comprehensive vCISO Services | ISMS Services | Security Risk Assessment Services | Mergers and Acquisition Security


Oct 28 2025

AI Governance Quick Audit

Open it in any web browser (Chrome, Firefox, Safari, Edge)

Complete the 10-question audit

Get your score and recommendations

10 comprehensive AI governance questionsReal-time progress trackingInteractive scoring system4 maturity levels (Initial, Emerging, Developing, Advanced) ✅ Personalized recommendationsComplete response summaryProfessional design with animations

Click 👇 below to open an AI Governance Quick Audit in your browser or click the image above.

Secure Your Business. Simplify Compliance. Gain Peace of Mind

Click the ISO 42001 Awareness Quiz — it will open in your browser in full-screen mode

iso42001_quizDownload

Protect your AI systems — make compliance predictable.
Expert ISO-42001 readiness for small & mid-size orgs. Get a AI Risk vCISO-grade program without the full-time cost. Think of AI risk like a fire alarm—our register tracks risks, scores impact, and ensures mitigations are in place before disaster strikes.

Check out our earlier posts on AI-related topics: AI topic

InfoSec services | InfoSec books | Follow our blog | DISC llc is listed on The vCISO Directory | ISO 27k Chat bot | Comprehensive vCISO Services | ISMS Services | Security Risk Assessment Services | Mergers and Acquisition Security

Tags: AI Governance Quick Audit


Oct 28 2025

InfoSec Policy Assistance

Category: AI,Information Securitydisc7 @ 10:11 am

Chatbot for a specific use case (policy Q&A, phishing training, etc.)

Click 👇 below to open an InfoSec-Chatbot in your browser or click the image above.

Open it in any web browser

Features:

  • ✅ Password & Authentication Policy Q&A
  • ✅ Data Classification guidance
  • ✅ Acceptable Use Policy
  • ✅ Security Incident Reporting procedures
  • ✅ Remote Work security guidelines
  • ✅ BYOD policy information
  • ✅ Interactive typing indicator
  • ✅ Quick prompt buttons
  • ✅ Severity indicators (Critical, High, Medium, Info)
  • ✅ Fully responsive design
  • ✅ Self-contained (no external dependencies)

Secure Your Business. Simplify Compliance. Gain Peace of Mind

Click the ISO 42001 Awareness Quiz — it will open in your browser in full-screen mode

iso42001_quizDownload

Protect your AI systems — make compliance predictable.
Expert ISO-42001 readiness for small & mid-size orgs. Get a AI Risk vCISO-grade program without the full-time cost. Think of AI risk like a fire alarm—our register tracks risks, scores impact, and ensures mitigations are in place before disaster strikes.

Check out our earlier posts on AI-related topics: AI topic

InfoSec services | InfoSec books | Follow our blog | DISC llc is listed on The vCISO Directory | ISO 27k Chat bot | Comprehensive vCISO Services | ISMS Services | Security Risk Assessment Services | Mergers and Acquisition Security

Tags: Chatbot, Infosec Cahtbot


Oct 17 2025

Deploying Agentic AI Safely: A Strategic Playbook for Technology Leaders

Category: AI,AI Governance,AI Guardrails,Information Securitydisc7 @ 11:16 am

McKinsey’s playbook, “Deploying Agentic AI with Safety and Security,” outlines a strategic approach for technology leaders to harness the potential of autonomous AI agents while mitigating associated risks. These AI systems, capable of reasoning, planning, and acting without human oversight, offer transformative opportunities across various sectors, including customer service, software development, and supply chain optimization. However, their autonomy introduces novel vulnerabilities that require proactive management.

The playbook emphasizes the importance of understanding the emerging risks associated with agentic AI. Unlike traditional AI systems, these agents function as “digital insiders,” operating within organizational systems with varying levels of privilege and authority. This autonomy can lead to unintended consequences, such as improper data exposure or unauthorized access to systems, posing significant security challenges.

To address these risks, the playbook advocates for a comprehensive AI governance framework that integrates safety and security measures throughout the AI lifecycle. This includes embedding control mechanisms within workflows, such as compliance agents and guardrail agents, to monitor and enforce policies in real time. Additionally, human oversight remains crucial, with leaders focusing on defining policies, monitoring outliers, and adjusting the level of human involvement as necessary.

The playbook also highlights the necessity of reimagining organizational workflows to accommodate the integration of AI agents. This involves transitioning to AI-first workflows, where human roles are redefined to steer and validate AI-driven processes. Such an approach ensures that AI agents operate within the desired parameters, aligning with organizational goals and compliance requirements.

Furthermore, the playbook underscores the importance of embedding observability into AI systems. By implementing monitoring tools that provide insights into AI agent behaviors and decision-making processes, organizations can detect anomalies and address potential issues promptly. This transparency fosters trust and accountability, essential components in the responsible deployment of AI technologies.

In addition to internal measures, the playbook advises technology leaders to engage with external stakeholders, including regulators and industry peers, to establish shared standards and best practices for AI safety and security. Collaborative efforts can lead to the development of industry-wide frameworks that promote consistency and reliability in AI deployments.

The playbook concludes by reiterating the transformative potential of agentic AI when deployed responsibly. By adopting a proactive approach to risk management and integrating safety and security measures into every phase of AI deployment, organizations can unlock the full value of these technologies while safeguarding against potential threats.

My Opinion:

The McKinsey playbook provides a comprehensive and pragmatic approach to deploying agentic AI technologies. Its emphasis on proactive risk management, integrated governance, and organizational adaptation offers a roadmap for technology leaders aiming to leverage AI’s potential responsibly. In an era where AI’s capabilities are rapidly advancing, such frameworks are essential to ensure that innovation does not outpace the safeguards necessary to protect organizational integrity and public trust.

Agentic AI: Navigating Risks and Security Challenges: A Beginner’s Guide to Understanding the New Threat Landscape of AI Agents

 

“AI is already the single largest uncontrolled channel for corporate data exfiltration—bigger than shadow SaaS or unmanaged file sharing.”

Click the ISO 42001 Awareness Quiz — it will open in your browser in full-screen mode

iso42001_quizDownload

Protect your AI systems — make compliance predictable.
Expert ISO-42001 readiness for small & mid-size orgs. Get a AI Risk vCISO-grade program without the full-time cost.

Secure Your Business. Simplify Compliance. Gain Peace of Mind

Check out our earlier posts on AI-related topics: AI topic

InfoSec services | InfoSec books | Follow our blog | DISC llc is listed on The vCISO Directory | ISO 27k Chat bot | Comprehensive vCISO Services | ISMS Services | Security Risk Assessment Services | Mergers and Acquisition Security

Tags: AI Agents, AI Playbook, AI safty


Oct 16 2025

AI Infrastructure Debt: Cisco Report Highlights Risks and Readiness Gaps for Enterprise AI Adoption

Category: AI,AI Governance,AI Guardrails,Information Securitydisc7 @ 4:55 pm

A recent Cisco report highlights a critical issue in the rapid adoption of artificial intelligence (AI) technologies by enterprises: the growing phenomenon of “AI infrastructure debt.” This term refers to the accumulation of technical gaps and delays that arise when organizations attempt to deploy AI on systems not originally designed to support such advanced workloads. As companies rush to integrate AI, many are discovering that their existing infrastructure is ill-equipped to handle the increased demands, leading to friction, escalating costs, and heightened security vulnerabilities.

The study reveals that while a majority of organizations are accelerating their AI initiatives, a significant number lack the confidence that their systems can scale appropriately to meet the demands of AI workloads. Security concerns are particularly pronounced, with many companies admitting that their current systems are not adequately protected against potential AI-related threats. Weaknesses in data protection, access control, and monitoring tools are prevalent, and traditional security measures that once safeguarded applications and users may not extend to autonomous AI systems capable of making independent decisions and taking actions.

A notable aspect of the report is the emphasis on “agentic AI”—systems that can perform tasks, communicate with other software, and make operational decisions without constant human supervision. While these autonomous agents offer significant operational efficiencies, they also introduce new attack surfaces. If such agents are misconfigured or compromised, they can propagate issues across interconnected systems, amplifying the potential impact of security breaches. Alarmingly, many organizations have yet to establish comprehensive plans for controlling or monitoring these agents, and few have strategies for human oversight once these systems begin to manage critical business operations.

Even before the widespread deployment of agentic AI, companies are encountering foundational challenges. Rising computational costs, limited data integration capabilities, and network strain are common obstacles. Many organizations lack centralized data repositories or reliable infrastructure necessary for large-scale AI implementations. Furthermore, security measures such as encryption, access control, and tamper detection are inconsistently applied, often treated as separate add-ons rather than being integrated into the core infrastructure. This fragmented approach complicates the identification and resolution of issues, making it more difficult to detect and contain problems promptly.

The concept of AI infrastructure debt underscores the gradual accumulation of these technical deficiencies. Initially, what may appear as minor gaps in computing resources or data management can evolve into significant weaknesses that hinder growth and expose organizations to security risks. If left unaddressed, this debt can impede innovation and erode trust in AI systems. Each new AI model, dataset, and integration point introduces potential vulnerabilities, and without consistent investment in infrastructure, it becomes increasingly challenging to understand where sensitive information resides and how it is protected.

Conversely, organizations that proactively address these infrastructure gaps are better positioned to reap the benefits of AI. The report identifies a group of “Pacesetters”—companies that have integrated AI readiness into their long-term strategies by building robust infrastructures and embedding security measures from the outset. These organizations report measurable gains in profitability, productivity, and innovation. Their disciplined approach to modernizing infrastructure and maintaining strong governance frameworks provides them with the flexibility to scale operations and respond to emerging threats effectively.

In conclusion, the Cisco report emphasizes that the value derived from AI is heavily contingent upon the strength and preparedness of the underlying systems that support it. For most enterprises, the primary obstacle is not the technology itself but the readiness to manage it securely and at scale. As AI continues to evolve, organizations that plan, modernize, and embed security early will be better equipped to navigate the complexities of this transformative technology. Those that delay addressing infrastructure debt may find themselves facing escalating technical and financial challenges in the future.

Opinion: The concept of AI infrastructure debt serves as a crucial reminder for organizations to adopt a proactive approach in preparing their systems for AI integration. Neglecting to modernize infrastructure and implement comprehensive security measures can lead to significant vulnerabilities and hinder the potential benefits of AI. By prioritizing infrastructure readiness and security, companies can position themselves to leverage AI technologies effectively and sustainably.

Everyone wants AI, but few are ready to defend it

Data for AI: Data Infrastructure for Machine Intelligence

“AI is already the single largest uncontrolled channel for corporate data exfiltration—bigger than shadow SaaS or unmanaged file sharing.”

Click the ISO 42001 Awareness Quiz — it will open in your browser in full-screen mode

iso42001_quizDownload

Protect your AI systems — make compliance predictable.
Expert ISO-42001 readiness for small & mid-size orgs. Get a AI Risk vCISO-grade program without the full-time cost.

Secure Your Business. Simplify Compliance. Gain Peace of Mind

Check out our earlier posts on AI-related topics: AI topic

InfoSec services | InfoSec books | Follow our blog | DISC llc is listed on The vCISO Directory | ISO 27k Chat bot | Comprehensive vCISO Services | ISMS Services | Security Risk Assessment Services | Mergers and Acquisition Security

Tags: AI Infrastructure Debt


Oct 10 2025

Anthropic Expands AI Role in U.S. National Security Amid Rising Oversight Concerns

Category: AI,AI Governance,AI Guardrails,Information Securitydisc7 @ 1:09 pm

Anthropic is looking to expand how its AI models can be used by the government for national security purposes.

Anthropic, the AI company, is preparing to broaden how its technology is used in U.S. national security settings. The move comes as the Trump administration is pushing for more aggressive government use of artificial intelligence. While Anthropic has already begun offering restricted models for national security tasks, the planned expansion would stretch into more sensitive areas.


Currently, Anthropic’s Claude models are used by government agencies for tasks such as cyber threat analysis. Under the proposed plan, customers like the Department of Defense would be allowed to use Claude Gov models to carry out cyber operations, so long as a human remains “in the loop.” This is a shift from solely analytical applications to more operational roles.


In addition to cyber operations, Anthropic intends to allow the Claude models to advance from just analyzing foreign intelligence to recommending actions based on that intelligence. This step would position the AI in a more decision-support role rather than purely informational.


Another proposed change is to use Claude in military and intelligence training contexts. This would include generating materials for war games, simulations, or educational content for officers and analysts. The expansion would allow the models to more actively support scenario planning and instruction.


Anthropic also plans to make sandbox environments available to government customers, lowering previous restrictions on experimentation. These environments would be safe spaces for exploring new use cases of the AI models without fully deploying them in live systems. This flexibility marks a change from more cautious, controlled deployments so far.


These steps build on Anthropic’s June rollout of Claude Gov models made specifically for national security usage. The proposed enhancements would push those models into more central, operational, and generative roles across defense and intelligence domains.


But this expansion raises significant trade-offs. On the one hand, enabling more capable AI support for intelligence, cyber, and training functions may enhance the U.S. government’s ability to respond faster and more effectively to threats. On the other hand, it amplifies risks around the handling of sensitive or classified data, the potential for AI-driven misjudgments, and the need for strong AI governance, oversight, and safety protocols. The balance between innovation and caution becomes more delicate the deeper AI is embedded in national security work.


My opinion
I think Anthropic’s planned expansion into national security realms is bold and carries both promise and peril. On balance, the move makes sense: if properly constrained and supervised, AI could provide real value in analyzing threats, aiding decision-making, and simulating scenarios that humans alone struggle to keep pace with. But the stakes are extremely high. Even small errors or biases in recommendations could have serious consequences in defense or intelligence contexts. My hope is that as Anthropic and the government go forward, they do so with maximum transparency, rigorous auditing, strict human oversight, and clearly defined limits on how and when AI can act. The potential upside is large, but the oversight must match the magnitude of risk.

“AI is already the single largest uncontrolled channel for corporate data exfiltration—bigger than shadow SaaS or unmanaged file sharing.”

Click the ISO 42001 Awareness Quiz — it will open in your browser in full-screen mode

iso42001_quizDownload

Protect your AI systems — make compliance predictable.
Expert ISO-42001 readiness for small & mid-size orgs. Get a AI Risk vCISO-grade program without the full-time cost.

Secure Your Business. Simplify Compliance. Gain Peace of Mind

Check out our earlier posts on AI-related topics: AI topic

InfoSec services | InfoSec books | Follow our blog | DISC llc is listed on The vCISO Directory | ISO 27k Chat bot | Comprehensive vCISO Services | ISMS Services | Security Risk Assessment Services | Mergers and Acquisition Security

Tags: Anthropic, National security


Oct 09 2025

AI Boom or Bubble? Experts Warn of Overheating as Investments Outpace Real Returns

Category: AI,AI Governance,Information Securitydisc7 @ 10:43 am

‘I Believe It’s a Bubble’: What Some Smart People Are Saying About AI — Bloomberg Businessweek 

1. Rising Fears of an AI Bubble
A growing chorus of analysts and industry veterans is voicing concern that the current enthusiasm around artificial intelligence might be entering bubble territory. While AI is often cast as a transformative revolution, signs of overvaluation, speculative behavior, and capital misallocation are drawing comparisons to past tech bubbles.

2. Circular Deals and Valuation Spirals
One troubling pattern is “circular deals,” where AI hardware firms invest in cloud or infrastructure players that, in turn, buy their chips. This feedback loop inflates the appearance of demand, distorting fundamentals. Some analysts say it’s a symptom of speculative overreach, though others argue the effect remains modest.

3. Debt-Fueled Investment and Cash Burn
Many firms are funding their AI buildouts via debt, even as their revenue lags or remains uncertain. High interest rates and mounting liabilities raise the risk that some may not be able to sustain their spending, especially if returns don’t materialize quickly.

4. Disparity Between Vision and Consumption
The scale of infrastructure investment is being questioned relative to actual usage and monetization. Some data suggest that while corporate AI spending is soaring, the end-consumer market remains relatively modest. That gap raises skepticism about whether demand will catch up to hype.

5. Concentration and Winner-Takes-All Dynamics
The AI boom is increasingly dominated by a few giants—especially hardware, cloud, and model providers. Emerging firms, even with promising tech, struggle to compete for capital. This concentration increases systemic risk: if one of the dominants falters, ripple effects could be severe.

6. Skeptics, Warnings, and Dissenting Views
Institutions like the Bank of England and IMF are cautioning about financial instability from AI overvaluation. Meanwhile, leaders in tech (such as Sam Altman) acknowledge bubble risk even as they remain bullish on long-term potential. Some bull-side analysts (e.g. Goldman Sachs) contend that the rally still rests partly on solid fundamentals.

7. Warning Signals and Bubble Analogies
Observers point to classic bubble signals—exuberant speculation, weak linkage to earnings, use of SPVs or accounting tricks, and momentum-driven valuation detached from fundamentals. Some draw parallels to the dot-com bust, while others argue that today’s AI wave may be more structurally grounded.

8. Market Implications and Timing Uncertainty
If a correction happens, it could ripple across tech stocks and broader markets, particularly given how much AI now underpins valuations. But timing is uncertain: it may happen abruptly or gradually. Some suggest the downturn might begin in the next 1–2 years, especially if earnings don’t keep pace.


My View
I believe we are in a “frothy” phase of the AI boom—one with real technological foundations, but also inflated expectations and speculative excess. Some companies will deliver massive upside; many others may not survive the correction. Prudent investors should assume that a pullback is likely, and guard against concentration risk. But rather than avoiding AI entirely, I’d lean toward a selective, cautious exposure—backing companies with solid fundamentals, defensible moats, and manageable capital structures.

AI Investment → Return Flywheel (Near to Mid Term)

Here’s a simplified flywheel model showing how current investments in AI could generate returns (or conversely, stress) over the next few years:

StageInputs / InvestmentsMechanisms / LeverageOutputs / ReturnsRisks / Leakages
1. Infrastructure BuildoutCapital into GPUs, data centers, cloud platformsScale, network effects, lower marginal costAccelerated training, model capacity growthOvercapacity, underutilization, power constraints
2. Model & Algorithm DevelopmentInvestment in R&D, talent, datasetsImproved accuracy, specialization, speedNew products, APIs, licensingDiminishing returns, competitive replication
3. Integration & DeploymentCapital for embedding models into verticalsCustomization, process automation, SaaS modelsEfficiency gains, new services, revenue growthAdoption lag, integration challenges
4. Monetization & PricingCustomer acquisition, pricing modelsSubscription, usage fees, enterprise contractsRecurring revenue, higher marginsMarket resistance, commoditization, margin pressure
5. Reinvestment & ScalingProfits or further capitalExpand into adjacent markets, cross-sellingFlywheel effect, valuation re-ratingCash outflows, competitive erosion, regulation

In an ideal version:

  1. Each dollar invested into infrastructure leads to economies of scale and enables cheaper model training (stage 1 → 2).
  2. Better models enable more integration (stage 3).
  3. Integration leads to monetization and revenue (stage 4).
  4. Profits get partly reinvested, accelerating expansion and capturing more markets (stage 5).

However, the chain can break if any link fails: infrastructure overhang, weak demand, pricing pressure, or inability to scale commercial adoption. In such a case, returns erode, valuations contract, and parts of the flywheel slow or reverse.

If the boom plays out well, the flywheel could generate compounding value for top-tier AI operators and their ecosystem over the next 3–5 years. But if the hype overshadows fundamentals, the flywheel could seize.

Related Articles:

High stock valuations sparking investor worries about market bubble

Is there an AI bubble? Financial institutions sound a warning 

Sam Altman says ‘yes,’ AI is in a bubble

AI Bubble: How to Survive the Next Stock Market Crash (Trading and Artificial Intelligence (AI))

AIMS and Data Governance – Managing data responsibly isn’t just good practice—it’s a legal and ethical imperative. Ready to start? Scroll down and try our free ISO-42001 Awareness Quiz at the bottom of the page!

“AI is already the single largest uncontrolled channel for corporate data exfiltration—bigger than shadow SaaS or unmanaged file sharing.”

Click the ISO 42001 Awareness Quiz — it will open in your browser in full-screen mode

iso42001_quizDownload

Protect your AI systems — make compliance predictable.
Expert ISO-42001 readiness for small & mid-size orgs. Get a AI Risk vCISO-grade program without the full-time cost.

Secure Your Business. Simplify Compliance. Gain Peace of Mind

Check out our earlier posts on AI-related topics: AI topic

InfoSec services | InfoSec books | Follow our blog | DISC llc is listed on The vCISO Directory | ISO 27k Chat bot | Comprehensive vCISO Services | ISMS Services | Security Risk Assessment Services | Mergers and Acquisition Security

Tags: AI Bubble


Sep 26 2025

Aligning risk management policy with ISO 42001 requirements

AI risk management and governance, so aligning your risk management policy means integrating AI-specific considerations alongside your existing risk framework. Here’s a structured approach:


1. Understand ISO 42001 Scope and Requirements

  • ISO 42001 sets standards for AI governance, risk management, and compliance across the AI lifecycle.
  • Key areas include:
    • Risk identification and assessment for AI systems.
    • Mitigation strategies for bias, errors, security, and ethical concerns.
    • Transparency, explainability, and accountability of AI models.
    • Compliance with legal and regulatory requirements (GDPR, EU AI Act, etc.).


2. Map Your Current Risk Policy

  • Identify where your existing policy addresses:
    • Risk assessment methodology
    • Roles and responsibilities
    • Monitoring and reporting
    • Incident response and corrective actions
  • Note gaps related to AI-specific risks, such as algorithmic bias, model explainability, or data provenance.


3. Integrate AI-Specific Risk Controls

  • AI Risk Identification: Add controls for data quality, model performance, and potential bias.
  • Risk Assessment: Include likelihood, impact, and regulatory consequences of AI failures.
  • Mitigation Strategies: Document methods like model testing, monitoring, human-in-the-loop review, or bias audits.
  • Governance & Accountability: Assign clear ownership for AI system oversight and compliance reporting.


4. Ensure Regulatory and Ethical Alignment

  • Map your AI systems against applicable standards:
    • EU AI Act (high-risk AI systems)
    • GDPR or HIPAA for data privacy
    • ISO 31000 for general risk management principles
  • Document how your policy addresses ethical AI principles, including fairness, transparency, and accountability.


5. Update Policy Language and Procedures

  • Add a dedicated “AI Risk Management” section to your policy.
  • Include:
    • Scope of AI systems covered
    • Risk assessment processes
    • Monitoring and reporting requirements
    • Training and awareness for stakeholders
  • Ensure alignment with ISO 42001 clauses (risk identification, evaluation, mitigation, monitoring).


6. Implement Monitoring and Continuous Improvement

  • Establish KPIs and metrics for AI risk monitoring.
  • Include regular audits and reviews to ensure AI systems remain compliant.
  • Integrate lessons learned into updates of the policy and risk register.


7. Documentation and Evidence

  • Keep records of:
    • AI risk assessments
    • Mitigation plans
    • Compliance checks
    • Incident responses
  • This will support ISO 42001 certification or internal audits.

Mastering ISO 23894 – AI Risk Management: The AI Risk Management Blueprint | AI Lifecycle and Risk Management Demystified | AI Risk Mastery with ISO 23894 | Navigating the AI Lifecycle with Confidence

AI Compliance in M&A: Essential Due Diligence Checklist

DISC InfoSec’s earlier posts on the AI topic

AIMS ISO42001 Data governance

AI is Powerful—But Risky. ISO/IEC 42001 Can Help You Govern It

Secure Your Business. Simplify Compliance. Gain Peace of Mind

InfoSec services | InfoSec books | Follow our blog | DISC llc is listed on The vCISO Directory | ISO 27k Chat bot | Comprehensive vCISO Services | ISMS Services | Security Risk Assessment Services | Mergers and Acquisition Security

Tags: AI Risk Management, AIMS, ISO 42001


Sep 24 2025

When AI Hype Weakens Society: Lessons from Karen Hao

Category: AI,AI Governance,Information Security,ISO 42001disc7 @ 12:23 pm

Karen Hao’s Empire of AI provides a critical lens on the current AI landscape, questioning what intelligence truly means in these systems. Hao explores how AI is often framed as an extraordinary form of intelligence, yet in reality, it remains highly dependent on the data it is trained on and the design choices of its creators.

She highlights the ways companies encourage users to adopt AI tools, not purely for utility, but to collect massive amounts of data that can later be monetized. This approach, she argues, blurs the line between technological progress and corporate profit motives.

According to Hao, the AI industry often distorts reality. She describes AI as overhyped, framing the movement almost as a quasi-religious phenomenon. This hype, she suggests, fuels unrealistic expectations both among developers and the public.

Within the AI discourse, two camps emerge: the “boomers” and the “doomers.” Boomers herald AI as a new form of superior intelligence that can solve all problems, while doomers warn that this same intelligence could ultimately be catastrophic. Both, Hao argues, exaggerate what AI can actually do.

Prominent figures sometimes claim that AI possesses “PhD-level” intelligence, capable of performing complex, expert-level tasks. In practice, AI systems often succeed or fail depending on the quality of the data they consume—a vulnerability when that data includes errors or misinformation.

Hao emphasizes that the hype around AI is driven by money and venture capital, not by a transformation of the economy. According to her, Silicon Valley’s culture thrives on exaggeration: bigger models, more data, and larger data centers are marketed as revolutionary, but these features alone do not guarantee real-world impact.

She also notes that technology is not omnipotent. AI is not independently replacing jobs; company executives make staffing decisions. As people recognize the limits of AI, they can make more informed, “intelligent” choices themselves, countering some of the fears and promises surrounding automation.

OpenAI exemplifies these tensions. Founded as a nonprofit intended to counter Silicon Valley’s profit-driven AI development, it quickly pivoted toward a capitalistic model. Today, OpenAI is valued around $300–400 billion, and its focus is on data and computing power rather than purely public benefit, reflecting the broader financial incentives in the AI ecosystem.

Hao likens the AI industry to 18th-century colonialism: labor exploitation, monopolization of energy resources, and accumulation of knowledge and talent in wealthier nations echo historical imperial practices. This highlights that AI’s growth has social, economic, and ethical consequences far beyond mere technological achievement.

Hao’s analysis shows that AI, while powerful, is far from omnipotent. The overhype and marketing-driven narrative can weaken society by creating unrealistic expectations, concentrating wealth and power in the hands of a few corporations, and masking the social and ethical costs of these technologies. Instead of empowering people, it can distort labor markets, erode worker rights, and foster dependence on systems whose decision-making processes are opaque. A society that uncritically embraces AI risks being shaped more by financial incentives than by human-centered needs.

Today’s AI can perform impressive feats—from coding and creating images to diagnosing diseases and simulating human conversation. While these capabilities offer huge benefits, AI could be misused, from autonomous weapons to tools that spread misinformation and destabilize societies. Experts like Elon Musk and Geoffrey Hinton echo these concerns, advocating for regulations to keep AI safely under human control.

Empire of AI: Dreams and Nightmares in Sam Altman’s OpenAI

Letters and Politics Mitch Jeserich interview Karen Hao 09/24/25

Generative AI is a “remarkable con” and “the perfect nihilistic form of tech bubbles”Ed Zitron

AI Darwin Awards Show AI’s Biggest Problem Is Human

DISC InfoSec’s earlier posts on the AI topic

AIMS ISO42001 Data governance

AI is Powerful—But Risky. ISO/IEC 42001 Can Help You Govern It

Secure Your Business. Simplify Compliance. Gain Peace of Mind

InfoSec services | InfoSec books | Follow our blog | DISC llc is listed on The vCISO Directory | ISO 27k Chat bot | Comprehensive vCISO Services | ISMS Services | Security Risk Assessment Services | Mergers and Acquisition Security

Tags: AI Hype Weakens Society, Empire of AI, Karen Hao


Sep 22 2025

Qantas just showed us that cyber-attacks don’t just hit customers—they can hit the CEO’s bonus

Category: Cyber Attack,Information Securitydisc7 @ 10:15 am

Hackers breached a third-party contact center platform, stealing data from 6M customers. No credit cards or passwords were exposed, but the board still cut senior leader bonuses by 15%. The CEO alone lost A$250,000.

This isn’t just an airline problem. It’s a wake-up call: boards are now holding executives financially accountable for cyber failures.

Key lessons for leaders:
🔹 Harden your help desk – add multi-step verification, ban one-step resets.
🔹 Do a vendor “containment sweep” – limit what customer data sits in third-party tools.
🔹 Prep customer comms kits – be ready to notify with clarity and speed.
🔹 Minimize sensitive data – don’t let vendors store more than they need.
🔹 Enforce strong controls – MFA, device trust checks, and callback verification.
🔹 Report to the board – show vendor exposure, tabletop results, and timelines.

My take: Boards are done treating cybersecurity as “someone else’s problem.” Linking executive pay to cyber resilience is the fastest way to drive accountability. If you’re an executive, assume vendor platforms are your systems—because when they fail, you’re the one explaining it to customers and shareholders.

Qantas executives punished for major cyber attack with cut to bonuses as Alan Joyce pockets another $3.8m

Secure Your Business. Simplify Compliance. Gain Peace of Mind

InfoSec services | InfoSec books | Follow our blog | DISC llc is listed on The vCISO Directory | ISO 27k Chat bot | Comprehensive vCISO Services | ISMS Services | Security Risk Assessment Services | Mergers and Acquisition Security

Tags: CEO bonus, Quantas


Sep 13 2025

How AI system provider can build data center which are deeply decarbonized data center

Category: AI,Information Securitydisc7 @ 10:32 am

Here’s a layered diagram showing how an AI system provider can build a deeply decarbonized data center — starting from clean energy supply at the outer layer down to handling residual emissions at the core.

AI data centers are the backbone of modern artificial intelligence—but they come with a growing list of side effects that are raising eyebrows across environmental, health, and policy circles. Here’s a breakdown of the most pressing concerns:

⚡ Environmental & Energy Impacts

  • Massive energy consumption: AI workloads require high-performance computing, which dramatically increases electricity demand. This strains local grids and often leads to reliance on fossil fuels.
  • Water usage for cooling: Many data centers use evaporative cooling systems, consuming millions of gallons of water annually—especially problematic in drought-prone regions.
  • Carbon emissions: Unless powered by renewables, data centers contribute significantly to greenhouse gas emissions, undermining climate goals

An AI system provider can build a deeply decarbonized data center by designing it to minimize greenhouse gas emissions across its full lifecycle—construction, energy use, and operations. Here’s how:

  1. Power Supply (Clean Energy First)
    • Run entirely on renewable electricity (solar, wind, hydro, geothermal).
    • Use power purchase agreements (PPAs) or direct renewable energy sourcing.
    • Design for 24/7 carbon-free energy rather than annual offsets.
  2. Efficient Infrastructure
    • Deploy high-efficiency cooling systems (liquid cooling, free-air cooling, immersion).
    • Optimize server utilization (AI workload scheduling, virtualization, consolidation).
    • Use energy-efficient chips/accelerators designed for AI workloads.
  3. Sustainable Building Design
    • Construct facilities with low-carbon materials (green concrete, recycled steel).
    • Maximize modular and prefabricated components to cut waste.
    • Use circular economy practices for equipment reuse and recycling.
  4. Carbon Capture & Offsets (Residual Emissions)
    • Where emissions remain (backup generators, construction), apply carbon capture or credible carbon removal offsets.
  5. Water & Heat Management
    • Implement closed-loop water cooling to minimize freshwater use.
    • Recycle waste heat to warm nearby buildings or supply district heating.
  6. Smart Operations
    • Apply AI-driven energy optimization to reduce idle consumption.
    • Dynamically shift workloads to regions/times where renewable energy is abundant.
  7. Supply Chain Decarbonization
    • Work with hardware vendors committed to net-zero manufacturing.
    • Require carbon transparency in procurement.

👉 In short: A deeply decarbonized AI data center runs on clean energy, uses ultra-efficient infrastructure, minimizes embodied carbon, and intelligently manages workloads and resources.

Sustainable Content: How to Measure and Mitigate the Carbon Footprint of Digital Data

Energy Efficient Algorithms and Green Data Centers for Sustainable Computing

🏘️ Societal & Equity Concerns

  • Disproportionate impact on marginalized communities: Many data centers are built in areas with existing environmental burdens, compounding risks for vulnerable populations.
  • Land use and displacement: Large-scale facilities can disrupt ecosystems and push out local residents or businesses.
  • Transparency issues: Communities often lack access to information about the risks and benefits of hosting data centers, leading to mistrust and resistance.

🔋 Strategic & Policy Challenges

  • Energy grid strain: The rapid expansion of AI infrastructure is pushing governments to consider controversial solutions like small modular nuclear reactors.
  • Regulatory gaps: Current zoning and environmental regulations may not be equipped to handle the scale and speed of AI data center growth.

Secure Your Business. Simplify Compliance. Gain Peace of Mind

InfoSec services | InfoSec books | Follow our blog | DISC llc is listed on The vCISO Directory | ISO 27k Chat bot | Comprehensive vCISO Services | ISMS Services | Security Risk Assessment Services | Mergers and Acquisition Security

Tags: AI data center, sustainable


Sep 12 2025

SANS “Own AI Securely” Blueprint: A Strategic Framework for Secure AI Integration

Category: AI,AI Governance,Information Securitydisc7 @ 1:58 pm
SANS Institute

The SANS Institute has unveiled its “Own AI Securely” blueprint, a strategic framework designed to help organizations integrate artificial intelligence (AI) securely and responsibly. This initiative addresses the growing concerns among Chief Information Security Officers (CISOs) about the rapid adoption of AI technologies without corresponding security measures, which has created vulnerabilities that cyber adversaries are quick to exploit.

A significant challenge highlighted by SANS is the speed at which AI-driven attacks can occur. Research indicates that such attacks can unfold more than 40 times faster than traditional methods, making it difficult for defenders to respond promptly. Moreover, many Security Operations Centers (SOCs) are incorporating AI tools without customizing them to their specific needs, leading to gaps in threat detection and response capabilities.

To mitigate these risks, the blueprint proposes a three-part framework: Protect AI, Utilize AI, and Govern AI. The “Protect AI” component emphasizes securing models, data, and infrastructure through measures such as access controls, encryption, and continuous monitoring. It also addresses emerging threats like model poisoning and prompt injection attacks.

The “Utilize AI” aspect focuses on empowering defenders to leverage AI in enhancing their operations. This includes integrating AI into detection and response systems to keep pace with AI-driven threats. Automation is encouraged to reduce analyst workload and expedite decision-making, provided it is implemented carefully and monitored closely.

The “Govern AI” segment underscores the importance of establishing clear policies and guidelines for AI usage within organizations. This includes defining acceptable use, ensuring compliance with regulations, and maintaining transparency in AI operations.

Rob T. Lee, Chief of Research and Chief AI Officer at SANS Institute, advises that CISOs should prioritize investments that offer both security and operational efficiency. He recommends implementing an adoption-led control plane that enables employees to access approved AI tools within a protected environment, ensuring security teams maintain visibility into AI operations across all data domains.

In conclusion, the SANS AI security blueprint provides a comprehensive approach to integrating AI technologies securely within organizations. By focusing on protection, utilization, and governance, it offers a structured path to mitigate risks associated with AI adoption. However, the success of this framework hinges on proactive implementation and continuous monitoring to adapt to the evolving threat landscape.

Sorce: CISOs brace for a new kind of AI chaos

ISO/IEC 42001: The Global Standard for Responsible AI Governance, Risk, and Compliance

What are main requirements for Internal audit of ISO 42001 AIMS

ISO 42001: The AI Governance Standard Every Organization Needs to Understand

Turn Compliance into Competitive Advantage with ISO 42001

ISO 42001 Readiness: A 10-Step Guide to Responsible AI Governance

Aligning with ISO 42001:2023 and/or the EU Artificial Intelligence (AI) Act

AIMS and Data Governance – Managing data responsibly isn’t just good practice—it’s a legal and ethical imperative. 

ISO 42001—the first international standard for managing artificial intelligence. Developed for organizations that design, deploy, or oversee AI, ISO 42001 is set to become the ISO 9001 of AI: a universal framework for trustworthytransparent, and responsible AI.


Trust Me – ISO 42001 AI Management System

ISO/IEC 42001:2023 – from establishing to maintain an AI management system

AI Act & ISO 42001 Gap Analysis Tool

Agentic AI: Navigating Risks and Security Challenges

Artificial Intelligence: The Next Battlefield in Cybersecurity

AI and The Future of Cybersecurity: Navigating the New Digital Battlefield

“Whether you’re a technology professional, policymaker, academic, or simply a curious reader, this book will arm you with the knowledge to navigate the complex intersection of AI, security, and society.”

AI Act & ISO 42001 Gap Analysis Tool

AI Governance Is a Boardroom Imperative—The SEC Just Raised the Stakes on AI Hype

How AI Is Transforming the Cybersecurity Leadership Playbook

Previous AI posts

IBM’s model-routing approach

Top 5 AI-Powered Scams to Watch Out for in 2025

Summary of CISO 3.0: Leading AI Governance and Security in the Boardroom

AI in the Workplace: Replacing Tasks, Not People

Why CISOs Must Prioritize Data Provenance in AI Governance

Interpretation of Ethical AI Deployment under the EU AI Act

AI Governance: Applying AI Policy and Ethics through Principles and Assessments

ISO/IEC 42001:2023, First Edition: Information technology – Artificial intelligence – Management system

ISO 42001 Artificial Intelligence Management Systems (AIMS) Implementation Guide: AIMS Framework | AI Security Standards

Businesses leveraging AI should prepare now for a future of increasing regulation.

Digital Ethics in the Age of AI 

DISC InfoSec’s earlier posts on the AI topic

Secure Your Business. Simplify Compliance. Gain Peace of Mind

InfoSec services | InfoSec books | Follow our blog | DISC llc is listed on The vCISO Directory | ISO 27k Chat bot | Comprehensive vCISO Services | ISMS Services | Security Risk Assessment Services | Mergers and Acquisition Security

Tags: SANS AI security blueprint


Sep 09 2025

Exploring AI security, privacy, and the pressing regulatory gaps—especially relevant to today’s fast-paced AI landscape

Category: AI,AI Governance,Information Securitydisc7 @ 12:44 pm

Featured Read: Securing the AI Frontier: Urgent Ethical and Regulatory Imperatives for AI-Driven Cybersecurity

  • Overview: This academic paper examines the growing ethical and regulatory challenges brought on by AI’s integration with cybersecurity. It traces the evolution of AI regulation, highlights pressing concerns—like bias, transparency, accountability, and data privacy—and emphasizes the tension between innovation and risk mitigation.
  • Key Insights:
    • AI systems raise unique privacy/security issues due to their opacity and lack of human oversight.
    • Current regulations are fragmented—varying by sector—with no unified global approach.
    • Bridging the regulatory gap requires improved AI literacy, public engagement, and cooperative policymaking to shape responsible frameworks.
  • Source: Authored by Vikram Kulothungan, published in January 2025, this paper cogently calls for a globally harmonized regulatory strategy and multi-stakeholder collaboration to ensure AI’s secure deployment.

Why This Post Stands Out

  • Comprehensive: Tackles both cybersecurity and privacy within the AI context—not just one or the other.
  • Forward-Looking: Addresses systemic concerns, laying the groundwork for future regulation rather than retrofitting rules around current technology.
  • Action-Oriented: Frames AI regulation as a collaborative challenge involving policymakers, technologists, and civil society.

Additional Noteworthy Commentary on AI Regulation

1. Anthropic CEO’s NYT Op-ed: A Call for Sensible Transparency

Anthropic CEO Dario Amodei criticized a proposed 10-year ban on state-level AI regulation as “too blunt.” He advocates a federal transparency standard requiring AI developers to disclose testing methods, risk mitigation, and pre-deployment safety measures.

2. California’s AI Policy Report: Guarding Against Irreversible Harms

A report commissioned by Governor Newsom warns of AI’s potential to facilitate biological and nuclear threats. It advocates “trust but verify” frameworks, increased transparency, whistleblower protections, and independent safety validation.

3. Mutually Assured Deregulation: The Risks of a Race Without Guardrails

Gilad Abiri argues that dismantling AI safety oversight in the name of competition is dangerous. Deregulation doesn’t give lasting advantages—it undermines long-term security, enabling proliferation of harmful AI capabilities like bioweapon creation or unstable AGI.


Broader Context & Insights

  • Fragmented Landscape: U.S. lacks unified privacy or AI laws; even executive orders remain limited in scope.
  • Data Risk: Many organizations suffer from unintended AI data exposure and poor governance despite having some policies in place.
  • Regulatory Innovation: Texas passed a law focusing only on government AI use, signaling a partial step toward regulation—but private sector oversight remains limited.
  • International Efforts: The Council of Europe’s AI Convention (2024) is a rare international treaty aligning AI development with human rights and democratic values.
  • Research Proposals: Techniques like blockchain-enabled AI governance are being explored as transparency-heavy, cross-border compliance tools.

Opinion

AI’s pace of innovation is extraordinary—and so are its risks. We’re at a crossroads where lack of regulation isn’t a neutral stance—it accelerates inequity, privacy violations, and even public safety threats.

What’s needed:

  1. Layered Regulation: From sector-specific rules to overarching international frameworks; we need both precision and stability.
  2. Transparency Mandates: Companies must be held to explicit standards—model testing practices, bias mitigation, data usage, and safety protocols.
  3. Public Engagement & Literacy: AI literacy shouldn’t be limited to technologists. Citizens, policymakers, and enforcement institutions must be equipped to participate meaningfully.
  4. Safety as Innovation Avenue: Strong regulation doesn’t kill innovation—it guides it. Clear rules create reliable markets, investor confidence, and socially acceptable products.

The paper “Securing the AI Frontier” sets the right tone—urging collaboration, ethics, and systemic governance. Pair that with state-level transparency measures (like Newsom’s report) and critiques of over-deregulation (like Abiri’s essay), and we get a multi-faceted strategy toward responsible AI.

Anthropic CEO says proposed 10-year ban on state AI regulation ‘too blunt’ in NYT op-ed

California AI Policy Report Warns of ‘Irreversible Harms’ 

Responsible AI in the Age of Generative Models: Governance, Ethics and Risk Management 

AI Governance: Applying AI Policy and Ethics through Principles and Assessments

AIMS and Data Governance – Managing data responsibly isn’t just good practice—it’s a legal and ethical imperative. 

DISC InfoSec previous posts on AI category

InfoSec services | InfoSec books | Follow our blog | DISC llc is listed on The vCISO Directory | ISO 27k Chat bot | Comprehensive vCISO Services | ISMS Services | Security Risk Assessment Services | Mergers and Acquisition Security

Tags: AI privacy, AI Regulations, AI security, AI standards


« Previous PageNext Page »