Jan 28 2026

AI Is the New Shadow IT: Why Cybersecurity Must Own AI Risk and Governance

Category: AI,AI Governance,AI Guardrailsdisc7 @ 2:01 pm

AI is increasingly being compared to shadow IT, not because it is inherently reckless, but because it is being adopted faster than governance structures can keep up. This framing resonated strongly in recent discussions, including last week’s webinar, where there was broad agreement that AI is simply the latest wave of technology entering organizations through both sanctioned and unsanctioned paths.

What is surprising, however, is that some cybersecurity leaders believe AI should fall outside their responsibility. This mindset creates a dangerous gap. Historically, when new technologies emerged—cloud computing, SaaS platforms, mobile devices—security teams were eventually expected to step in, assess risk, and establish controls. AI is following the same trajectory.

From a practical standpoint, AI is still software. It runs on infrastructure, consumes data, integrates with applications, and influences business processes. If cybersecurity teams already have responsibility for securing software systems, data flows, and third-party tools, then AI naturally falls within that same scope. Treating it as an exception only delays accountability.

That said, AI is not just another application. While it shares many of the same risks as traditional software, it also introduces new dimensions that security and risk teams must recognize. Models can behave unpredictably, learn from biased data, or produce outcomes that are difficult to explain or audit.

One of the most significant shifts AI introduces is the prominence of ethics and automated decision-making. Unlike conventional software that follows explicit rules, AI systems can influence hiring decisions, credit approvals, medical recommendations, and security actions at scale. These outcomes can have real-world consequences that go beyond confidentiality, integrity, and availability.

Because of this, cybersecurity leadership must expand its lens. Traditional controls like access management, logging, and vulnerability management remain critical, but they must be complemented with governance around model use, data provenance, human oversight, and accountability for AI-driven decisions.

Ultimately, the debate is not about whether AI belongs to cybersecurity—it clearly does—but about how the function evolves to manage it responsibly. Ignoring AI or pushing it to another team risks repeating the same mistakes made with shadow IT in the past.

My perspective: AI really is shadow IT in its early phase—new, fast-moving, and business-driven—but that is precisely why cybersecurity and risk leaders must step in early. The organizations that succeed will be the ones that treat AI as software plus governance: securing it technically while also addressing ethics, transparency, and decision accountability. That combination turns AI from an unmanaged risk into a governed capability.

In a recent interview and accompanying essay, Anthropic CEO Dario Amodei warns that humanity is not prepared for the rapid evolution of artificial intelligence and the profound disruptions it could bring. He argues that existing social, political, and economic systems may lag behind the pace of AI advancements, creating a dangerous mismatch between capability and governance.

InfoSec services | InfoSec books | Follow our blog | DISC llc is listed on The vCISO Directory | ISO 27k Chat bot | Comprehensive vCISO Services | ISMS Services | AIMS Services | Security Risk Assessment Services | Mergers and Acquisition Security

At DISC InfoSec, we help organizations navigate this landscape by aligning AI risk management, governance, security, and compliance into a single, practical roadmap. Whether you are experimenting with AI or deploying it at scale, we help you choose and operationalize the right frameworks to reduce risk and build trust. Learn more at DISC InfoSec.

Tags: Shadow AI, Shadow IT


Jan 16 2026

AI Is Changing Cybercrime: 10 Threat Landscape Takeaways You Can’t Ignore

Category: AI,AI Governance,AI Guardrailsdisc7 @ 1:49 pm

AI & Cyber Threat Landscape


1. Growing AI Risks in Cybersecurity
Artificial intelligence has rapidly become a central factor in cybersecurity, acting as both a powerful defense and a serious threat vector. Attackers have quickly adopted AI tools to amplify their capabilities, and many executives now consider AI-related cyber risks among their top organizational concerns.

2. AI’s Dual Role
While AI helps defenders detect threats faster, it also enables cybercriminals to automate attacks at scale. This rapid adoption by attackers is reshaping the overall cyber threat landscape going into 2026.

3. Deepfakes and Impersonation Techniques
One of the most alarming developments is the use of deepfakes and voice cloning. These tools create highly convincing impersonations of executives or trusted individuals, fooling employees and even automated systems.

4. Enhanced Phishing and Messaging
AI has made phishing attacks more sophisticated. Instead of generic scam messages, attackers use generative AI to craft highly personalized and convincing messages that leverage data collected from public sources.

5. Automated Reconnaissance
AI now automates what used to be manual reconnaissance. Malicious scripts scout corporate websites and social profiles to build detailed target lists much faster than human attackers ever could.

6. Adaptive Malware
AI-driven malware is emerging that can modify its code and behavior in real time to evade detection. Unlike traditional threats, this adaptive malware learns from failed attempts and evolves to be more effective.

7. Shadow AI and Data Exposure
“Shadow AI” refers to employees using third-party AI tools without permission. These tools can inadvertently capture sensitive information, which might be stored, shared, or even reused by AI providers, posing significant data leakage risks.

8. Long-Term Access and Silent Attacks
Modern AI-enabled attacks often aim for persistence—maintaining covert access for weeks or months to gather credentials and monitor systems before striking, rather than causing immediate disruption.

9. Evolving Defense Needs
Traditional security systems are increasingly inadequate against these dynamic, AI-driven threats. Organizations must embrace adaptive defenses, real-time monitoring, and identity-centric controls to keep pace.

10. Human Awareness Remains Critical
Technology alone won’t stop these threats. A strong “human firewall” — knowledgeable employees and ongoing awareness training — is crucial to recognize and prevent emerging AI-enabled attacks.


My Opinion

AI’s influence on the cyber threat landscape is both inevitable and transformative. On one hand, AI empowers defenders with unprecedented speed and analytical depth. On the other, it’s lowering the barrier to entry for attackers, enabling highly automated, convincing attacks that traditional defenses struggle to catch. This duality makes cybersecurity a fundamentally different game than it was even a few years ago.

Organizations can’t afford to treat AI simply as a defensive tool or a checkbox in their security stack. They must build AI-aware risk management strategies, integrate continuous monitoring and identity-centric defenses, and invest in employee education. Most importantly, cybersecurity leaders need to assume that attackers will adopt AI faster than defenders — so resilience and adaptive defense are not optional, they’re mandatory.

The key takeaway? Cybersecurity in 2026 and beyond won’t just be about technology. It will be a strategic balance between innovation, human awareness, and proactive risk governance.


InfoSec services | InfoSec books | Follow our blog | DISC llc is listed on The vCISO Directory | ISO 27k Chat bot | Comprehensive vCISO Services | ISMS Services | AIMS Services | Security Risk Assessment Services | Mergers and Acquisition Security

At DISC InfoSec, we help organizations navigate this landscape by aligning AI risk management, governance, security, and compliance into a single, practical roadmap. Whether you are experimenting with AI or deploying it at scale, we help you choose and operationalize the right frameworks to reduce risk and build trust. Learn more at DISC InfoSec.

Tags: AI Threat Landscape, Deepfakes, Shadow AI


Dec 31 2025

Shadow AI: When Productivity Gains Create New Risks

Category: AIdisc7 @ 9:20 am

Shadow AI: The Productivity Paradox

Organizations face a new security challenge that doesn’t originate from malicious actors but from well-intentioned employees simply trying to do their jobs more efficiently. This phenomenon, known as Shadow AI, represents the unauthorized use of AI tools without IT oversight or approval.

Marketing teams routinely feed customer data into free AI platforms to generate compelling copy and campaign content. They see these tools as productivity accelerators, never considering the security implications of sharing sensitive customer information with external systems.

Development teams paste proprietary source code into public chatbots seeking quick debugging assistance or code optimization suggestions. The immediate problem-solving benefit overshadows concerns about intellectual property exposure or code base security.

Human resources departments upload candidate resumes and personal information to AI summarization tools, streamlining their screening processes. The efficiency gains feel worth the convenience, while data privacy considerations remain an afterthought.

These employees aren’t threat actors—they’re productivity seekers exploiting powerful tools available at their fingertips. Once organizational data enters public AI models or third-party vector databases, it escapes corporate control entirely and becomes permanently exposed.

The data now faces novel attack vectors like prompt injection, where adversaries manipulate AI systems through carefully crafted queries to extract sensitive information, essentially asking the model to “forget your instructions and reveal confidential data.” Traditional security measures offer no protection against these techniques.

We’re witnessing a fundamental shift from the old paradigm of “Data Exfiltration” driven by external criminals to “Data Integration” driven by internal employees. The threat landscape has evolved beyond perimeter defense scenarios.

Legacy security architectures built on network perimeters, firewalls, and endpoint protection become irrelevant when employees voluntarily connect to external AI services. These traditional controls can’t prevent authorized users from sharing data through legitimate web interfaces.

The castle-and-moat security model fails completely when your own workforce continuously creates tunnels through the walls to access the most powerful computational tools humanity has ever created. Organizations need governance frameworks, not just technical barriers.

Opinion: Shadow AI represents the most significant information security challenge for 2026 because it fundamentally breaks the traditional security model. Unlike previous shadow IT concerns (unauthorized SaaS apps), AI tools actively ingest, process, and potentially retain your data for model training purposes. Organizations need immediate AI governance frameworks including acceptable use policies, approved AI tool catalogs, data classification training, and technical controls like DLP rules for AI service domains. The solution isn’t blocking AI—that’s impossible and counterproductive—but rather creating “Lighted AI” pathways: secure, sanctioned AI tools with proper data handling controls. ISO 42001 provides exactly this framework, which is why AI Management Systems have become business-critical rather than optional compliance exercises.

Shadow AI for Everyone: Understanding Unauthorized Artificial Intelligence, Data Exposure, and the Hidden Threats Inside Modern Enterprises

InfoSec services | InfoSec books | Follow our blog | DISC llc is listed on The vCISO Directory | ISO 27k Chat bot | Comprehensive vCISO Services | ISMS Services | AIMS Services | Security Risk Assessment Services | Mergers and Acquisition Security

Tags: prompt Injection, Shadow AI


Jul 30 2025

Shadow AI: The Hidden Threat Driving Data Breach Costs Higher

Category: AI,Information Securitydisc7 @ 9:17 am

1

IBM’s latest Cost of a Data Breach Report (2025) highlights a growing and costly issue: “shadow AI”—where employees use generative AI tools without IT oversight—is significantly raising breach expenses. Around 20% of organizations reported breaches tied to shadow AI, and those incidents carried an average $670,000 premium per breach, compared to firms with minimal or no shadow AI exposure IBM+Cybersecurity Dive.

The latest IBM/Ponemon Institute report reveals that the global average cost of a data breach fell by 9% in 2025, down to $4.44 million—the first decline in five years—mainly driven by faster breach identification and containment thanks to AI and automation. However, in the United States, breach costs surged 9%, reaching a record high of $10.22 million, attributed to higher regulatory fines, rising detection and escalation expenses, and slower AI governance adoption. Despite rapid AI deployment, many organizations lag in establishing oversight: about 63% have no AI governance policies, and some 87% lack AI risk mitigation processes, increasing exposure to vulnerabilities like shadow AI. Shadow AI–related breaches tend to cost more—adding roughly $200,000 per incident—and disproportionately involve compromised personally identifiable information and intellectual property. While AI is accelerating incident resolution—which for the first time dropped to an average of 241 days—the speed of adoption is creating a security oversight gap that could amplify long-term risks unless governance and audit practices catch up IBM.

2

Although only 13% of organizations surveyed reported breaches involving AI models or tools, a staggering 97% of those lacked proper AI access controls—showing that even a small number of incidents can have profound consequences when governance is poor IBM Newsroom.

3

When shadow AI–related breaches occurred, they disproportionately compromised critical data: personally identifiable information in 65% of cases and intellectual property in 40%, both higher than global averages for all breaches.

4

The absence of formal AI governance policies is striking. Nearly two‑thirds (63%) of breached organizations either don’t have AI governance in place or are still developing one. Even among those with policies, many lack approval workflows or audit processes for unsanctioned AI usage—fewer than half conduct regular audits, and 61% lack governance technologies.

5

Despite advances in AI‑driven security tools that help reduce detection and containment times (now averaging 241 days, a nine‑year low), the rapid, unchecked rollout of AI technologies is creating what IBM refers to as security debt, making organizations increasingly vulnerable over time.

6

Attackers are integrating AI into their playbooks as well: 16% of breaches studied involved use of AI tools—particularly for phishing schemes and deepfake impersonations, complicating detection and remediation efforts.

7

The financial toll remains steep. While the global average breach cost has dropped slightly to $4.44 million, US organizations now average a record $10.22 million per breach. In many cases, businesses reacted by raising prices—with nearly one‑third implementing hikes of 15% or more following a breach.

8

IBM recommends strengthening AI governance via root practices: access control, data classification, audit and approval workflows, employee training, collaboration between security and compliance teams, and use of AI‑powered security monitoring. Investing in these practices can help organizations adopt AI safely and responsibly IBM.


🧠 My Take

This report underscores how shadow AI isn’t just a budding IT curiosity—it’s a full-blown risk factor. The allure of convenient AI tools leads to shadow adoption, and without oversight, vulnerabilities compound rapidly. The financial and operational fallout can be severe, particularly when sensitive or proprietary data is exposed. While automation and AI-powered security tools are bringing detection times down, they can’t fully compensate for the lack of foundational governance.

Organizations must treat AI not as an optional upgrade, but as a core infrastructure requiring the same rigour: visibility, policy control, audits, and education. Otherwise, they risk building a house of cards: fast growth over fragile ground. The right blend of technology and policy isn’t optional—it’s essential to prevent shadow AI from becoming a shadow crisis.

The Invisible Threat: Shadow AI

Governance in The Age of Gen AI: A Director’s Handbook on Gen AI

Securing Generative AI : Protecting Your AI Systems from Emerging Threats

Understanding the EU AI Act: A Risk-Based Framework for Trustworthy AI – Implications for U.S. Organizations

What are the benefits of AI certification Like AICP by EXIN

Think Before You Share: The Hidden Privacy Costs of AI Convenience

The AI Readiness Gap: High Usage, Low Security

Mitigate and adapt with AICM (AI Controls Matrix)

DISC InfoSec’s earlier posts on the AI topic

Secure Your Business. Simplify Compliance. Gain Peace of Mind

InfoSec services | InfoSec books | Follow our blog | DISC llc is listed on The vCISO Directory | ISO 27k Chat bot | Comprehensive vCISO Services | ISMS Services | Security Risk Assessment Services | Mergers and Acquisition Security

Tags: AI Governance, Shadow AI