Aug 20 2025

The highlights from the OWASP AI Maturity Assessment framework

Category: AI,owaspdisc7 @ 3:51 pm

1. Purpose and Scope

The OWASP AI Maturity Assessment provides organizations with a structured way to evaluate how mature their practices are in managing the security, governance, and ethical use of AI systems. Its scope goes beyond technical safeguards, emphasizing a holistic approach that covers people, processes, and technology.

2. Core Maturity Domains

The framework divides maturity into several domains: governance, risk management, security, compliance, and operations. Each domain contains clear criteria that organizations can use to assess themselves and identify both strengths and weaknesses in their AI security posture.

3. Governance and Oversight

A strong governance foundation is highlighted as essential. This includes defining roles, responsibilities, and accountability structures for AI use, ensuring executive alignment, and embedding oversight into organizational culture. Without governance, technical controls alone are insufficient.

4. Risk Management Integration

Risk management is emphasized as an ongoing process that must be integrated into AI lifecycles. This means continuously identifying, assessing, and mitigating risks associated with data, algorithms, and models, while also accounting for evolving threats and regulatory changes.

5. Security and Technical Controls

Security forms a major part of the maturity model. It stresses the importance of secure coding, model hardening, adversarial resilience, and robust data protection. Secure development pipelines and automated monitoring of AI behavior are seen as crucial for preventing exploitation.

6. Compliance and Ethical Considerations

The assessment underscores regulatory alignment and ethical responsibilities. Organizations are expected to demonstrate compliance with applicable laws and standards while ensuring fairness, transparency, and accountability in AI outcomes. This dual lens of compliance and ethics sets the framework apart.

7. Operational Excellence

Operational maturity is measured by how well organizations integrate AI governance into day-to-day practices. This includes ongoing monitoring of deployed AI systems, clear incident response procedures for AI failures or misuse, and mechanisms for continuous improvement.

8. Maturity Levels

The framework uses levels of maturity (from ad hoc practices to fully optimized processes) to help organizations benchmark themselves. Moving up the levels involves progress from reactive, fragmented practices to proactive, standardized, and continuously improving capabilities.

9. Practical Assessment Method

The assessment is designed to be practical and repeatable. Organizations can self-assess or engage third parties to evaluate maturity against OWASP criteria. The output is a roadmap highlighting gaps, recommended improvements, and prioritized actions based on risk appetite.

10. Value for Organizations

Ultimately, the OWASP AI Maturity Assessment enables organizations to transform AI adoption from a risky endeavor into a controlled, strategic advantage. By balancing governance, security, compliance, and ethics, it gives organizations confidence in deploying AI responsibly at scale.


My Opinion

The OWASP AI Maturity Assessment stands out as a much-needed framework in today’s AI-driven world. Its strength lies in combining technical security with governance and ethics, ensuring organizations don’t just “secure AI” but also use it responsibly. The maturity levels provide clear benchmarks, making it actionable rather than purely theoretical. In my view, this framework can be a powerful tool for CISOs, compliance leaders, and AI product managers who need to align innovation with trust and accountability.

visual roadmap of the OWASP AI Maturity levels (1–5), showing the progression from ad hoc practices to fully optimized, proactive, and automated AI governance and security.

Download OWASP AI Maturity Assessment Ver 1.0 August 11, 2025

PDF of the OWASP AI Maturity Roadmap with business-value highlights for each level.

Practical OWASP Security Testing: Hands-On Strategies for Detecting and Mitigating Web Vulnerabilities in the Age of AI

Building Trust with High-Risk AI: What Article 15 of the EU AI Act Means for Accuracy, Robustness & Cybersecurity

From Compliance to Confidence: How DISC LLC Delivers Strategic Cybersecurity Services That Scale

Expertise-in-Virtual-CISO-vCISO-Services-2Download

Secure Your Business. Simplify Compliance. Gain Peace of Mind

InfoSec services | InfoSec books | Follow our blog | DISC llc is listed on The vCISO Directory | ISO 27k Chat bot | Comprehensive vCISO Services | ISMS Services | Security Risk Assessment Services | Mergers and Acquisition Security

Tags: OWASP AI Maturity, OWASP Security Testing


Dec 18 2023

OWASP API Security Checklist for 2023

Category: API security,owaspdisc7 @ 2:08 pm

OWASP API Security Checklist for 2023 – via Practical DevSecOps

API Security in Action

Decoding the OWASP Top 10: Unveiling Common Web Application Security Risks and Testing Strategies

InfoSec tools | InfoSec services | InfoSec books | Follow our blog | DISC llc is listed on The vCISO Directory

Tags: API security checklist, API Security in Action


Aug 03 2023

OWASP Top 10 for LLM (Large Language Model) applications is out!

Category: owaspdisc7 @ 12:45 pm

The OWASP Top 10 for LLM (Large Language Model) Applications version 1.0 is out, it focuses on the potential security risks when using LLMs.

OWASP released the OWASP Top 10 for LLM (Large Language Model) Applications project, which provides a list of the top 10 most critical vulnerabilities impacting LLM applications.

The project aims to educate developers, designers, architects, managers, and organizations about the security issues when deploying Large Language Models (LLMs).

The organization is committed to raising awareness of the vulnerabilities and providing recommendations for hardening LLM applications.

“The OWASP Top 10 for LLM Applications Working Group is dedicated to developing a Top 10 list of vulnerabilities specifically applicable to applications leveraging Large Language Models (LLMs).” reads the announcement of the Working Group. “This initiative aligns with the broader goals of the OWASP Foundation to foster a more secure cyberspace and is in line with the overarching intention behind all OWASP Top 10 lists.”

The organization states that the primary audience for its Top 10 is developers and security experts who design and implement LLM applications. However the project could be interest to other stakeholders in the LLM ecosystem, including scholars, legal professionals, compliance officers, and end users.

“The goal of this Working Group is to provide a foundation for developers to create applications that include LLMs, ensuring these can be used securely and safely by a wide range of entities, from individuals and companies to governments and other organizations.” continues the announcement.

The Top Ten is the result of the work of nearly 500 security specialists, AI researchers, developers, industry leaders, and academics. Over 130 of these experts actively contributed to this guide.

Clearly the project is a work in progress, LLM technology continues to evolve, and the research on security risk will need to keep pace.

Below is the Owasp Top 10 for LLM version 1.0

LLM01: Prompt Injection

This manipulates a large language model (LLM) through crafty inputs, causing unintended actions by the LLM. Direct injections overwrite system prompts, while indirect ones manipulate inputs from external sources.

LLM02: Insecure Output Handling

This vulnerability occurs when an LLM output is accepted without scrutiny, exposing backend systems. Misuse may lead to severe consequences like XSS, CSRF, SSRF, privilege escalation, or remote code execution.

LLM03: Training Data Poisoning

This occurs when LLM training data is tampered, introducing vulnerabilities or biases that compromise security, effectiveness, or ethical behavior. Sources include Common Crawl, WebText, OpenWebText, & books.

LLM04: Model Denial of Service

Attackers cause resource-heavy operations on LLMs, leading to service degradation or high costs. The vulnerability is magnified due to the resource-intensive nature of LLMs and unpredictability of user inputs.

LLM05: Supply Chain Vulnerabilities

LLM application lifecycle can be compromised by vulnerable components or services, leading to security attacks. Using third-party datasets, pre-trained models, and plugins can add vulnerabilities.

LLM06: Sensitive Information Disclosure

LLM’s may inadvertently reveal confidential data in its responses, leading to unauthorized data access, privacy violations, and security breaches. It’s crucial to implement data sanitization and strict user policies to mitigate this.

LLM07: Insecure Plugin Design

LLM plugins can have insecure inputs and insufficient access control. This lack of application control makes them easier to exploit and can result in consequences like remote code execution.

LLM08: Excessive Agency

LLM-based systems may undertake actions leading to unintended consequences. The issue arises from excessive functionality, permissions, or autonomy granted to the LLM-based systems.

LLM09: Overreliance

Systems or people overly depending on LLMs without oversight may face misinformation, miscommunication, legal issues, and security vulnerabilities due to incorrect or inappropriate content generated by LLMs.

LLM10: Model Theft

This involves unauthorized access, copying, or exfiltration of proprietary LLM models. The impact includes economic losses, compromised competitive advantage, and potential access to sensitive information.

The organization invites experts to join it and provide support to the project.

You can currently download version 1.0 in two formats.  The full PDF and the abridged slide format.

Web Application Security: Exploitation and Countermeasures for Modern Web Applications

InfoSec tools | InfoSec services | InfoSec books