
API Security Checklist

 5. I nclude business logic in design reviews: when you perform secure design
 reviews, ensure that you are evaluating business logic and end to end API
 flows for susceptibility to abuse. When building or integrating APIs, you
 must also consider how functionality might be misused or abused.
 Identifying, triaging, mitigating, and remediating vulnerabilities in your own
 custom APIs is different from patching vulnerabilities in vendor supplied
 software. Security issues may also only manifest themselves in a complete
 system after code has been built and deployed, which is where an
 organization must stress fast detection and response, not just
 pre-deployment analysis.

 API documentation

 The top 3 recommendations for secure design and development include:

 1. Use machine formats like OpenAPI Specification �OAS�
 2. Repurpose API schema as a basic testing approach and protection approach
 3. Have a contingency plan for documentation discrepancies and API drift

 API documentation serves a range of security and non-security purposes
 throughout the API lifecycle. Documentation is useful for the application and API
 teams that are building or integrating APIs. Adequate documentation also provides
 benefits to a range of activities including design reviews, security testing,
 operations, and protection. API documentation should be created in machine
 formats such as OAS for REST APIs. The machine formats allow for auto-generation
 of documentation as part of design and mocking, and they are also parsable by
 other testing and protection tooling. Like all forms of documentation though, teams
 inevitably neglect to document APIs or new functionality as they iterate. This reality
 of API documentation process leads to a type of environment drift, or API drift, that
 leaves massive gaps in your API inventory and security posture.

 Best practices for API documentation include:

 1. Use machine formats for documentation: when generating API
 documentation, opt for machine formats and schema definitions as opposed
 to traditional documentation or visual diagrams. Most commonly for REST
 APIs, these machine formats include Swagger or OAS. Depending on your
 API design, development or publishing tooling, other formats like RAML or
 API Blueprint may be present. And if you are exploring GraphQL APIs, then
 also expect to work with GraphQL schema definitions. Traditional
 documentation can be useful for reviews by a less technical audience, but
 such forms of documentation are not easily maintained. The API schema
 definition formats are designed for quick generation of documentation as

 Salt I API Security Best Practices I 4

 part of API design and mocking that is also reusable for testing, integration,
 publishing, and operations.

 2. Use API schema validators but acknowledge limitations: API schema
 validators can find common issues related to formatting or overlooked
 parameters, but they are not a panacea. View them as a type of static
 analysis, much like linters or quality checkers within IDEs. Schema validators
 are inherent in tools like Postman and API management �APIM� platforms
 like Apigee, but they can’t find all types of API issues, let alone security
 issues or logic flaws. Organizations may also opt to trigger schema
 validation as part of secure build pipelines. These validation tools are only
 as good as what you document as part of API design and development.
 Inevitably, you may be lacking schema definitions as your API ecosystem
 expands to include partner integrations, external API dependencies, and
 third-party SaaS services.

 3. Prepare for documentation discrepancies and API drift: organizations of
 all sizes and across verticals regularly face difficulties with scaling and
 operationalizing API design, development and publication. API drift is a type
 of environment drift where the current state of APIs in production does not
 match what is expected or documented. It is an inevitability with
 development turnover, outsourcing, and acquisition. Even if your
 organization is able to obtain API documentation and schema definitions,
 they may not be complete. It is possible to publish an API absent any
 schema definition, and not all API parameters need to be defined. API teams
 may also document an API fully at the initial launch but then fail to keep up
 with versions over time due to conflicting work priorities. The only way to
 address this gap is to monitor your environments and API traffic in runtime
 or seek tooling that can auto-discover APIs, auto-generate schema
 definitions, and produce an API inventory.

 API discovery and cataloging

 The top 3 recommendations for API discovery and cataloging include:

 1. Discover APIs in lower environments and not just production
 2. Include API dependencies, aka third-party APIs
 3. Tag and label APIs and microservices as a DevOps best practice

 Automated discovery of API endpoints, parameters and data types is crucial for all
 organizations since APIs are the primary mechanism for powering business logic
 and data exchange. API documentation, while a best practice in itself, may not be
 done consistently. Documentation may be absent entirely or out of date. Adequate

 Salt I API Security Best Practices I 5

 API schema definitions may not be available
 to you as a result of siloed development and
 security efforts. Or third parties may not
 make them available to you. Your
 organization’s API catalog is much more than
 the APIs mediated by API management and
 API gateways since APIs may be built,
 acquired, or integrated outside of formal
 process. An accurate API inventory is critical
 to many aspects of IT within the
 organization. Compliance, risk, and privacy
 teams will require API inventory, particularly
 as they must answer to regulatory bodies.
 Security teams also need API inventory so
 that they can have a realistic view of their
 attack surface and risk posture to help
 prioritize the wide range of API security
 activities that must be accounted for.

 Best practices for API discovery and cataloging include:

 1. Discover non-production environments, not just production: it’s critically
 important that you track lower environments including QA, UAT, staging,
 SIT, and pre-production in addition to your production environments.
 Attackers know that non-production environments often have fewer relaxed
 or no security controls, yet APIs in those environments may still allow
 access to similar sets of functionality and data. Organizations often set up
 lower environments with minimal hardening to help promote rapid
 development and integration to meet production goals and release
 schedules. Lower environments may also be Internet exposed which further
 elevates the security risk.

 2. Get into the habit of tagging and labeling assets: the practice of labeling
 and tagging creates a type of virtuous cycle, becoming incredibly useful in
 DevOps practices and git-based workflows. Tags and labels are useful for a
 wide range of activities throughout the API lifecycle including:

 ● Controlling versions of developed application code and
 infrastructure-as-code as seen in GitOps workflows

 ● Powering DevOps style release patterns such as canary
 deployments and blue-green deployments

 ● Informing access controls, traffic routing rules, and
 microsegmentation policies for the containers and container clusters
 that often power APIs and microservices.

 Salt I API Security Best Practices I 6

 ● Routing defect tracking tickets to appropriate owners and speeding
 up remediation

 ● Informing API management policies and monitoring capabilities
 ● Informing data security protections

 3. Include the API dependencies of your APIs: expand beyond just
 homegrown APIs to also include APIs from open-source software, acquired
 application packages, and third-party SaaS services. API security concerns
 don’t begin and end with just your custom-built APIs. Vendor risk attestation
 and contractual language are useful primarily as reactive measures that
 provide for legal recourse, and they provide minimal guarantee at the
 technology layer. Organizations are inherently limited by the configuration
 options that are within their realm of control for third-party services. This
 limitation does not absolve the organization from security risk though.
 Significant gaps often exist between perceived design of an application and
 its APIs as opposed to the delivered, integrated system. The combination of
 built, integrated, and acquired APIs defines the digital supply chain that all
 organizations work within.

 4. Repurpose what you have as a start: most organizations have some data
 sources they can tap into to build a basic inventory. Commonly, these data
 sources include the catalog of APIs and data sources within API
 management and integration platforms. Traffic analysis may also be useful,
 as can dynamic testing tools run as part of application scanning. Using
 those methods, you will need to ensure you are scanning all of your known
 network address space to be reasonably sure you are finding all APIs. Stay
 away from manually updated or static data sources, which includes many
 asset databases and configuration management databases �CMDB�.
 Repurposing the data you collect for an API inventory will be an extensive
 and ongoing exercise in data aggregation, correlation, and analytics, but it
 can be a stopgap solution until you are equipped to procure an API security
 offering with discovery capabilities.

 Security testing

 The top 3 recommendations for security testing include:

 1. Statically analyze API code automatically as part of version control and CI/CD
 2. Check for known vulnerable dependencies in your API code
 3. Dynamically analyze and fuzz deployed APIs to identify exploitable code in

 runtime

 Salt I API Security Best Practices I 7

 Often viewed as the backbone of an application security program,
 security testing is a significant focus area of many organizations’ API
 security strategies. The emphasis on investing in security testing
 tooling and integrating it as part of development and release processes
 has only grown as industry has pushed the ideal of shift-left more
 heavily. While it is possible to scan for certain types of security issues
 automatically, particularly known vulnerabilities in published software,
 this type of scanning is less useful for the world of APIs. Traditional
 scanning technologies struggle with parsing custom developed code,
 since design patterns and coding practices vary per developer. As a
 result, organizations often struggle with high false positive and false
 negative rates. No scanner is adept at parsing business logic, which
 also leaves organizations exposed to major forms of API abuse. Use
 traditional security testing tools to verify certain elements of an API
 implementation such as well-known misconfigurations or
 vulnerabilities, but you must operate these tools with awareness of the
 limitations. Traditional testing tools often fail to identify flaws, or
 zero-day vulnerabilities, in the application and API code you create.

 Best practices for security testing include:

 1. Repurpose vulnerability scanning to identify API infrastructure: most
 organizations have established vulnerability assessment and vulnerability
 management �VA/VM� scanning capabilities. These services are helpful for
 identifying some misconfigurations and well-known vulnerabilities, typically
 reported as common vulnerabilities and exposures identifiers �CVE IDs), but
 this information applies only to published software. For custom API
 development or integration work, vulnerability scanning benefits are limited.
 These scanning services can still be useful for identifying exposed servers
 or workloads that may be listening on well-known TCP ports like 80 and
 443 for API requests. Bear in mind that API services may also be configured
 to listen on other TCP ports, so scanning larger port ranges is advisable.
 Vulnerability scanners should also support ephemeral and containerized
 environments to adequately assess API hosting infrastructure.

 2. Analyze API code automatically where possible: analyze code
 automatically with static analysis tools like code quality checkers and static
 application security testing �SAST� upon code commit in version control
 systems such as git and/or in CI/CD build pipelines. If you are reviewing
 code manually, the process will quickly hit a wall with the rate of change
 most organizations see in their code and APIs. Scan the integrated code
 base as part of build within CI/CD to obtain the most accurate scan, but
 some organizations also opt to scan pieces of code as they are committed
 to version control for speediness. A code quality checker is the least

 Salt I API Security Best Practices I 8

 purpose-built, but they are often plentiful in organizations since many
 design and development tools include native code quality checking
 capabilities. SAST may be delivered through language-specific linters or a
 commercial-grade scanning offering. Regardless of the tool you select,
 prepare for high numbers of findings of potential conditions and false
 positives, particularly if a codebase has never been scanned. Static
 analyzers notoriously need tuning to be used effectively. Static analysis will
 not be able to cover business logic flaws by design.

 3. Run fuzzing and dynamic testing against deployed APIs: absent code
 scanning, the other approach to testing custom APIs is the use of fuzzers
 and dynamic application security testing �DAST� tools. Fuzzers are difficult
 to configure properly and require subject matter expertise to run effectively.
 However, fuzzing typically results in more thorough testing and identifying a
 wide range of exploitable conditions in code. The time it takes for a fuzzer
 to run to completion can be unpredictable, and subsequent runs can
 produce different results due to the number of variables in play. DAST fairs
 slightly better, since tools, particularly commercial-grade options, are
 designed to be easier to get started with. When automating the scanning of
 APIs with DAST, you will need API schema along with recorded traces of an
 application session or automation scripts like Selenium or Appium to drive
 the scanner. While DAST scanners can be effective with traditional web
 application designs, they will often fail to understand how to exercise APIs.
 It is common to see a DAST scan run for a few minutes and return trivial
 results because the scanner wasn’t configured properly to navigate API
 functionality in the right sequence.

 4. Check for known vulnerable code dependencies: similar to VA/VM where
 the goal is identifying CVE�IDs, dependency analyzers and software
 composition analysis �SCA� scanners can identify known vulnerable
 open-source software packages and third-party libraries in API source
 code, infrastructure-as-code, and container images that all play a part in
 the complete systems that run APIs. Quickly identifying these known
 vulnerable dependencies helps knock out a wide range of potentially
 exploitable code that inevitably becomes part of your running APIs and
 serving infrastructure. Run these dependency analysis tools during code
 commits, in build, in delivery, and continuously. API infrastructure may be
 mutable depending where your organization is at with DevOps maturity and
 pursuit of infrastructure automation. New vulnerable dependencies may be
 inadvertently introduced making it crucial to run these checks continuously.

 5. Pentest APIs periodically or as mandated by regulation: penetration
 testing, specifically application-scoped and API-scoped engagements,
 involve a mixture of automated and manual testing techniques. It should be

 Salt I API Security Best Practices I 9

 handled by those with appropriate subject matter expertise. If a pentesting
 firm is offering junior level testers or running VA scanners to analyze your
 most critical APIs, look elsewhere. The interval at which you should or must
 perform pentests is sometimes outlined by corresponding regulation.
 Absent compliance or regulatory requirement, it is advisable to coordinate
 pentest engagements quarterly, semi-annually, or annually for your most
 critical or exposed APIs.

 6. Augment testing further with bug bounties if you want more assurance:
 some organizations also opt to augment their security testing capacity
 further with bug bounty programs that are public or private, and possibly
 coordinated through a crowd-sourced platform. Bug bounty programs can
 be the subject of debate, and bounty services often provide no guaranteed
 testing methodology as typically seen with a qualified pentesting firm.
 Typically, you pay for results, not the engagement and testing activity itself.
 Still, using the “power of the crowd” continuously with bug bounties can be
 useful for uncovering API issues that even the most seasoned security
 experts are unable to find.

 Front-end security

 The top 3 recommendations for front-end security include:

 1. Draft security requirements for front-end code including JavaScript, Android,
 and iOS

 2. Store minimal or no data client-side since it is prone to attack and reverse
 engineering

 3. Explore client-side code protections if you’ve secured back-end APIs

 Organizations often attempt to secure and harden the front-end code that is
 installed on user devices, but this proposition can be difficult given what is in the
 realm of control of the organization. For mobilized employee apps, this approach
 may still be technically feasible for bring your own device �BYOD� and
 corporate-owned, personally-enabled �COPE� scenarios. However, for mobile apps
 destined for customers, patients, or citizens, an organization has little control over
 end user devices where client-side code protections are often circumvented.
 Securing the front-end application, or the API client, that depends on back-end
 APIs for functionality and data can be useful as part of a layered security approach,
 but such an approach still has downsides. Some pitfalls of client-side approaches
 you should be aware of include:

 Salt I API Security Best Practices I 10

 ● Client-side code is readily decompiled or disassembled to uncover and
 understand API endpoints, including any protections you embed in that
 code.

 ● Client-side code controls are not feasible for direct API or machine to
 machine communication

 ● Techniques like certificate pinning, while sometimes recommended, can
 complicate certificate rotations, app updates, and back-end traffic
 inspection.

 ● Client-side mechanisms can slow down release cadences for mobile apps
 and complicate public app store vetting processes.

 ● Client-side challenges like CAPTCHA are readily bypassed or farmed out to
 solving services. Client-side behavior analytics and machine tracking
 inadvertently create privacy concerns.

 Best practices for front-end security include:

 1. Provide security requirements for front ends: for web channels, front-end
 code is typically built using some form of JavaScript such as Angular or
 React. Users also typically interact with APIs using mobile applications.
 Mobile platforms bring their own uniqueness and security of native mobile
 binaries should also be considered. Similar to ASVS, OWASP also maintains
 the mobile ASVS �MASVS� that can be a good starting point for defining
 security requirements for mobile device platforms. Apple and Google
 maintain secure coding guidance that can be useful for defining your secure
 coding practices for mobile apps. You should provide guidance on how to
 exchange data securely with back-end APIs, how to authenticate users
 on-device, and how to persist data on-device.

 2. Presume client code and client devices are compromised: always operate
 with the mindset that client-code will be reverse engineered, end user
 devices are compromised, and data originating from clients lacks integrity.
 The security risks of these realities are mitigated in varying ways,
 depending where you want to invest time, energy, and budget. Endpoint
 protection can quickly become cost prohibitive, and such solutions are not
 feasible for Internet-facing APIs consumed by the public since you don’t
 “own” consumer devices. For any API, ensure that you are verifying data
 originating from API clients, filter as appropriate for malicious injections
 such as SQLi or JSONi, and escape output to avoid certain types of
 reflected attacks like XSS.

 3. Limit the data you store client-side: ideally no sensitive data or intellectual
 property is stored client-side. Realistically, some pieces of data must be
 persisted to provide for an adequate front-end user experience. It’s
 common practice to temporarily persist data such as to maintain session

 Salt I API Security Best Practices I 11

 state or cache for performance. Attackers know this design practice and will
 regularly inspect client-side cache and storage for any remnants of
 sensitive data when reverse engineering apps. Desirable sensitive data
 includes authentication tokens and session data that can be useful to
 attackers attempting session hijacking or account takeover �ATO�. If you
 must store data client-side, use hardware-backed cryptographically secure
 storage to do so. APIs to interface with device-level hardware and encrypt
 data appropriately are provided by the respective OS vendor and should
 also be provided to engineering teams.

 4. Review client-side protection options after server-side protection: focus
 first on protecting back-end APIs. We know that client-side code and
 end-user devices will always be prone to tampering and reverse
 engineering by attackers. Given enough time, an attacker can circumvent
 anti-tampering and anti-debugging mechanisms, bypass root or jailbreak
 checks, potentially defeat app authentication, and parse obfuscated code.
 Mature organizations are aware of this cat-and-mouse game and bolster
 back-end security before considering front-end protection options. Some
 client-side protections can be obtained for low or no cost, such as in the
 case of Android Studio obfuscation with ProGuard . However, obfuscation by
 itself will not prevent reverse engineering, it just slows down the process for
 attackers. System library calls can’t be obfuscated since it makes the code
 unrunnable. As a result, organizations that pursue the path of client-side
 code protection must also pair obfuscation with anti-debugging and
 anti-tampering techniques.

 Logging and monitoring

 The top 3 recommendations for logging and monitoring include:

 1. Define all the infrastructure, application, and API elements that must be logged
 2. Factor in non-security use cases such as API performance and uptime

 measures
 3. Allocate enough storage for API telemetry, which will lead you to cloud

 Logging and monitoring are not specific to just API security, but it is oftentimes an
 afterthought for even general IT processes. Every interaction that users and
 machines have with your API tells a story. These story elements include
 authentication successes and failures, rates of requests, time of day, the location
 from where requests originate, data stores accessed, and much more. It should be
 a question of “what should we log?” but rather “how do we extract meaningful
 signals from logged data?” All of the telemetry you collect ultimately informs
 detection, incident response, and runtime protection. It is also useful for

 Salt I API Security Best Practices I 12

 constructing baselines of what constitutes “normal” so that any outlier events can
 be quickly identified and resolved. Baselines are useful for analyzing general
 performance or availability problems but also security issues.

 Best practices for logging and monitoring include:

 1. Define what elements must be logged: account for the numerous
 code-level settings and infrastructure configuration as you define what
 information needs to be logged, at what interval, and how long it must be
 retained. Ideally, these guidelines are defined as part of the secure code
 and configuration practices discussed earlier. Realistically, all activity must
 be logged since attackers may be stealthy in their reconnaissance and
 attack attempts. You will need to capture full API request and response
 traffic, and it’s not just a matter of alerting on excessive authentication
 failures.

 2. Incorporate non-security logging requirements: to avoid overburdening
 teams, ensure that your logging requirements also incorporate the needs of
 API operations or infrastructure teams who are likely more concerned about
 troubleshooting ability and tracking uptime. There will be some overlap
 between the needs for non-security and security. Indeed, some indicators
 of a performance problem, such as error rates, can also be an indicator of
 compromise in the event that an attacker is probing your APIs. Common
 logging details and metrics latency, request sizes, response sizes, error
 rates, and API caller location.

 3. Embrace automation for logging configuration: a multitude of “as-code”
 approaches exist for configuration, infrastructure, and policy you should
 consider using in your organization to help automate the necessary logging
 and auditing settings. The “as-code” approaches are also fundamental to
 most cloud infrastructure and cloud-native designs. Never presume that an
 acquired software package, cloud-service, or infrastructure component has
 logging enabled or at a level of detail that is sufficient enough since these
 features are often left disabled to keep a product more performant.

 4. Embrace cloud technology: “cloud” is expansive, and adoption of cloud
 technology need not be adoption of fully public cloud services. Such is the
 case for many organizations since it may not appeal to their risk appetite or
 satisfy regulatory restrictions. “Cloud” also takes the form of cloud-native
 design patterns and use of cloud-enabling technologies like software
 defined networking and container platforms. Private cloud, hybrid cloud,
 and multi-cloud are common strategies in organizations. You need not go
 “all-in” with one public cloud provider. The volume of data you must
 capture, retain and analyze to support logging and monitoring leads

 Salt I API Security Best Practices I 13

 organizations to elastic storage, cloud scale data analytics and packaged
 ML to store all the data, analyze the information, and surface meaningful
 signals. Traditional infrastructure approaches and data storage will simply
 not scale.

 API mediation and architecture

 The top 3 recommendations for API mediation and architecture include:

 1. Mediate APIs to improve observability and monitoring capabilities
 2. Use mediation mechanisms like API gateways to enforce access control
 3. Augment your mediation mechanisms with API security tooling that can provide

 context

 While it’s possible to directly expose an API
 via a web or application server, this
 practice is less common in typical
 enterprise architectures. API mediation can
 be achieved through a number of other
 mechanisms as well, including network
 load balancers, application delivery
 controllers, Kubernetes ingress controllers,
 sidecar proxies, and service mesh
 ingresses. Design patterns like API facade
 and front-end for back-ends involve
 putting a proxying mediation layer “in front
 of” APIs. Typically, this design pattern is
 achieved by deploying API gateways that
 function as reverse proxies, forward
 proxies, or both. API management suites
 and integration platforms also make use of
 API gateways to enable their functionality and enforce policies. Mediation provides
 a wide range of benefits including improved visibility, accelerated delivery,
 increased operational flexibility, and improved enforcement capabilities, particularly
 when it comes to API access control.

 Best practices for API mediation and architecture include:

 1. Mediate APIs to improve observability and monitoring: by virtue of
 positioning within enterprise architecture, API gateways are deployed in
 various spots of a network topology and application architecture to mediate
 inner and outer APIs. Collectively, all these API gateway instances “see”
 how API callers are consuming your exposed, outer APIs, and how those

 Salt I API Security Best Practices I 14

 requests traverse into inner APIs as well as microservices. Rarely is there
 one gateway unless it is a monolithic design or enterprise service bus type
 deployment. Harvest telemetry from your API gateways to improve your
 monitoring capabilities and create amplifying effects for your non-security
 and security initiatives.

 2. Mediate APIs to enforce access control: API gateways are foundational for
 providing traffic management, authentication, and authorization
 mechanisms. Traffic management functions map to well-known network
 security controls such as rate limits or IP address allow and deny lists. API
 gateways are also an ideal place to enforce authentication and
 authorization for APIs, such as OpenID Connect �OIDC� and OAuth2
 respectively. Typically, API gateways are paired with external identity and
 access management �IAM� systems to share the load of storing all types of
 user or machine identities, authenticating identities, authorizing identities,
 and maintaining audit trails of all activity. Plan with the notion that machines
 consuming your APIs (such as in automation use cases or partner
 integration) can be just as dominant as traditional end user consumption
 using client front-ends.

 3. Adopt API management for non-security use cases: organizations
 sometimes reach a tipping point where they have too many APIs or too
 many API gateway deployments that lack standardization and
 centralization. To bring order to the chaos, organizations will often opt for
 an APIM offering that brings a broader range of lifecycle capabilities
 including features to support monetization of APIs, partner enablement,
 developer self-service, quote management, access control policies,
 operational workflow, publishing control, and centralized logging. The APIM
 offering enables and enforces these features via API gateway deployments.

 4. Augment API mediation technologies with security-focused controls:
 organizations historically front-end their mediation layer with web
 application firewalls �WAF�. This approach can provide a level of protection
 from general web injection attacks, protect partner or developer
 self-service portals in the API management �APIM� suite, and protect
 back-end database services used to power the APIM itself. Some APIM
 offerings also offer lightweight threat protection that are essentially
 message filters. Much like WAFs, These APIM and API gateway threat
 protection filters can be useful for blocking some forms of injection,
 including XML or JSON injection, but rules are typically too static, too
 generic or not maintained by the vendor. You should look to purpose-built
 API security offerings that can provide full lifecycle security and API context
 rather than repurposing traditional controls like WAF.

 Salt I API Security Best Practices I 15

 Network security

 The top 3 recommendations for network security include:

 1. Enable encrypted transport to protect the data your APIs transmit
 2. Use IP address allow and deny lists if you have small numbers of API consumers
 3. Look to dynamic rate limiting and rely on static rate limiting as a last resort

 Traditional network perimeters were created at the ingress to an
 organization’s datacenters. As organizations move towards an
 integrated ecosystem of APIs and adopt cloud services those
 network boundaries erode immensely. Infrastructure is much more
 ephemeral as well as virtualized and containerized, which makes
 many network access controls unusable at scale. Network security
 begins to heavily intersect with identity and access management
 �IAM� as an organization gets into zero trust architectures. The
 design goals of zero trust promote that your ability to connect to a
 given resource depends on what you are doing at a given moment,
 which is heavily tied to your authenticated context and behaviors
 within that session. The principles of zero trust and some zero trust
 focused technologies like microsegmentation or zero trust network
 access �ZTNA� are sometimes overloaded as “application security.”
 These zero trust technologies are used to control connectivity
 between workloads or to control connectivity to workloads that
 power applications and APIs. The level of security protection doesn’t
 go deeper than that.

 Best practices for network security include:

 1. Use encrypted transport to protect the data your APIs transmit: TLS
 should be enabled for any API endpoints to protect data in transit, ideally
 version 1.3 but 1.2 at a minimum. All versions of SSL should be disabled due
 to the number of weaknesses in the protocol or related cipher suites.
 Legacy infrastructure components sometimes linger within organizations or
 suppliers, requiring that SSL or older versions of TLS be maintained. Some
 traffic inspection tooling may also not support more recent encryption
 protocols, which puts organizations in a bind when they want to maintain
 visibility over their network traffic. Unfortunately, supporting older protocols
 and cipher suites exposes the organization to a number of cryptographic
 and downgrade attacks that can result in encrypted data being viewable by
 unauthorized parties. Enforce encryption policies through your API
 mediation layer wherever possible, and ensure legacy protocols and cipher
 suites are kept disabled. If necessary, refactor or re-architect the
 supporting infrastructure of your APIs, opting for TLS termination points

 Salt I API Security Best Practices I 16

 that allow you to maintain traffic visibility while still mitigating security risk
 of encryption protocol attacks.

 2. Set IP address allow and deny lists for small numbers of API consumers: a
 common control used to restrict what API callers can even make a network
 connection to your API, let alone authenticate or transact with it, is the IP
 address allow and deny list. This network security control is often found
 within APIM, API gateways, and network infrastructure elements like a load
 balancer. The lists may also be based on threat intelligence feeds of known
 malicious IP addresses. IP address allow and deny lists can be useful if your
 API is interacted with by a limited set of partners or consumers. If your API
 is public or open though, it is extremely difficult to scale this type of control
 for the larger Internet. You may opt to block certain blocks of IP addresses
 allocated to geographical regions, but know that attackers can circumvent
 IP address deny lists with proxies and VPNs. Attackers will also spin up
 ephemeral workloads in cloud providers to launch their attacks, which is
 often allowed address space as organizations adopt cloud technology.
 Attackers may also use networks of compromised endpoints to perpetuate
 attacks. In practice, IP address allow and deny lists need to be much more
 dynamic and paired with behavior analysis and anomaly detection engines
 to be effective.

 3. Use dynamic rate limits and set static rate limits selectively: rate limits
 can be useful for restricting consumption of APIs for a smaller set of API
 consumers or partners. Rate limits however often become difficult to scale
 for larger user bases. The issue is prevalent enough that it appears on the
 OWASP API Security Top 10 as API4�2019 Lack of Resources & Rate
 Limiting . You will likely need to relax rate limits, observe traffic consumption
 to inform a baseline, and tighten limits over time. For organizations where
 API consumption can experience spikes, such as in retail and with new
 product launches or seasonable demand, setting effective rate limits can be
 a lesson in frustration. Realistically, rate limiting mechanisms should be
 much more dynamic, granular, and based on actual consumption patterns.
 Setting blanket static rate limits can result in impeded application
 functionality that directly impacts the organization’s business, not to
 mention attackers will throttle their attempts to evade those limits.

 4. Enforce network security via infrastructure, not in code: most network
 security controls must exist external to the API code. If ever there was
 evidence that API security is not solely the responsibility of development
 teams or issues were the result of “poor coding practice,” network security
 techniques are a prime example. Transport protection, rate limits, and IP
 address allow/deny lists are almost exclusively defined in infrastructure and
 API mediation mechanisms. One could argue that it might be addressable

 Salt I API Security Best Practices I 17

 using infrastructure-as-code, but that form of code is more likely to be
 owned by network engineering, infrastructure, or API operations teams, not
 application development.

 Data security

 The top 3 recommendations for data security include:

 1. Use encryption selectively and transport protection suffices for most use cases
 2. Avoid sending too much data to clients and relying on the client to filter data
 3. Adjust for threats like scraping or data inference where encryption is not a

 mitigation

 Data security approaches aim
 to provide confidentiality,
 integrity and authenticity of
 data. If your organization still
 includes privacy in the data
 security bucket, then
 anonymization and
 pseudonymization are also in
 scope. Depending on your
 data security goals and
 impacting regulation,
 appropriate techniques for
 protecting data include masking, tokenizing, or encrypting. Many data security
 efforts focus on securing data at rest in a system back-end, such as database
 encryption or field-level encryption. These approaches protect organizations from
 attacks where the data storage is targeted directly. If your API is designed to only
 send encrypted payloads as an additional level of encryption beyond transport
 protection, attackers will still attempt to extract unencrypted data elsewhere, such
 as in memory, from client storage, or other positions within network topology.
 These encryption approaches also do not protect the organization from cases
 where an attacker obtains a credential or authorized session since the data will be
 decrypted for them when accessed through an API.

 Best practices for data security include:

 1. Use encryption selectively or as mandated by regulation: history is riddled
 with many failed crypto implementations and misconfigurations that were
 exploited by attackers. Key management is already a complex endeavor, but
 matters only get worse in the world of automation and API communication
 where time is of the essence and prompting for key material is a

 Salt I API Security Best Practices I 18

 non-starter. As a result, application teams sometimes make the mistake of
 storing key material in unsecured locations, such as in code, in client-side
 storage, or in general purpose cloud storage, all of which are frequently
 harvested by attackers.

 2. Transport protection should suffice for most business and security
 cases: most organizations have a hard enough time implementing TLS.
 Encrypting message bodies or payloads on top of encrypted transport can
 be overkill. This added layer of encryption requires a high level of effort to
 do effectively, not to mention that it can also add latency or can create
 integration headaches with other systems. More often than not, attackers
 defeat such mechanisms by harvesting exchanged key material that the
 client needs in order to encrypt and decrypt data from back-end APIs.

 3. Always use well-vetted algorithms and encryption libraries: many
 implementation details of encryption are important to get “right” to avoid
 incidents such as salt sizes, rounds of salting, initialization vectors, key
 sizes, and more. These considerations also vary for symmetric encryption
 and asymmetric encryption. NIST provides some guidance on encryption,
 but you will also need to augment with specifics related to your technology
 stack. Guidance evolves over time as new encryption exploits surface or
 weaknesses are uncovered in cipher suites. You must also properly maintain
 encryption tooling and code libraries since flaws can be uncovered over
 time, such as OpenSSL and the Heartbleed bug. This best practice is not
 just a developer problem since encryption tooling and libraries are used in
 many layers of the technology stack.

 4. Avoid sending too much data to API clients: back-end APIs are sometimes
 designed to serve up a great deal of data in responses to API calls, and it
 becomes the duty of the front-end client code to filter out what should be
 visible based on the goals of the user experience �UX� or permission levels.
 This design pattern goes against API security best practice since that data
 is fully visible by observing API requests and responses. Attackers
 commonly reverse engineer front-end code and sniff API traffic directly to
 see what data is actually being transmitted. The issue ranks as one of the
 OWASP API Security Top 10 as API3�2019 Excessive Data Exposure because
 it is so commonplace. Don’t send too much data, particularly sensitive or
 private data, to front-end clients and always presume that they are
 compromised. Filter data appropriately in the back-end and send only the
 data that is necessary for that particular API consumer.

 5. Plan for risks of scraping, data aggregation, and data inference: a few
 pieces of data may be innocent, but when data is collected and aggregated
 at scale, the situation becomes much more precarious. The resulting data

 Salt I API Security Best Practices I 19

 sets quickly become privacy impacting and brand damaging. No quick fixes
 exist for these data security and privacy risks. Mitigation requires a
 combination of many techniques like limiting how much private data you
 collect in the first place, using rate limiting effectively, and limiting how
 much data you send to API clients. Attackers will use automation to their
 advantage to scrape and aggregate data in large volumes. Attackers employ
 a plethora of tooling including intercepting proxies, debuggers, Python
 scripting, and command line clients like cURL and HTTPie. Scraped data is
 also useful in other attack techniques such as brute forcing, credential
 stuffing, phishing, and social engineering. To detect and stop abnormal API
 consumption like scraping, you will need to seek API security tooling that
 continuously analyzes API telemetry, analyzes behaviors, and identifies
 anomalies.

 Authentication and authorization

 The top 3 recommendations for authentication and authorization include:

 1. Continuously authenticate and authorize API consumers
 2. Avoid the use of API keys as a means of authentication
 3. Use modern authorization protocols like OAuth2 with security extensions

 Authentication and
 authorization, and by
 extension identity and access
 management �IAM� are
 foundational to all security
 domains, including API
 security. As organizations
 have shifted towards heavily
 distributed architectures and
 use of cloud services, the
 traditional security best
 practice of locking down a
 perimeter has become less
 useful. IAM is now used
 heavily to control access to
 functionality and data, and it
 is also an enabler of zero
 trust architectures. When considering security best practices for authentication and
 authorization, remember that you must account for user identities as well as
 machine identities. While it is possible to challenge a user for additional
 authentication material in a session, this option is not available for machine

 Salt I API Security Best Practices I 20

 communication. Externalize your access controls and identity stores wherever
 possible, which includes mediation mechanisms like API gateways, user and
 machine identity stores, IAM solutions, key management services, public key
 infrastructure, and secrets management. Implementation of these technologies is
 rarely an application developer responsibility, particularly as you consider the
 completely integrated system or digital supply chain.

 Best practices for authentication and authorization include:

 1. Authenticate and continuously authorize API consumers: access control
 has always involved authentication and authorization. Authentication
 �AuthN�, involves identifying the requester of a given function or resource
 and challenging that entity for authentication material or credentials.
 Authorization �AuthZ� involves verifying whether that authenticated entity
 actually has permissions to exercise a function or read, write, update, or
 delete data. Traditionally, both were handled at the start of a session. In the
 web world, and by extension APIs, sessions are stateless. The operating
 environments of back-ends and front-ends are not guaranteed and often
 ephemeral. Increasingly, environments are also prone to integrity issues or
 compromise, hence the rise of zero trust architectures. As a result, you
 must continuously verify whether a user or machine identity should have
 access to a given resource and always presume the authenticated session
 might be compromised. This approach requires analyzing behaviors of a
 given session for an API consumer, and potentially terminating that session,
 requiring step-up authentication, or blocking access as appropriate.

 2. Use modern authentication and authorization protocols: use newer
 authentication protocols like OpenID Connect and authorization protocols.
 Using sufficient authentication token lengths and entropy are also critically
 important to mitigate risk of session guessing or brute forcing. JSON Web
 Tokens �JWT� are a popular choice as a token format within OAuth2.
 Two-factor authentication �2FA� should also be in your arsenal for
 authenticating users that consume APIs. 2FA challenges are delivered
 through email, SMS, or Time-based One-time Password �TOTP�
 authenticator apps. Certificate-based authentication is more common for
 machine-to-machine communication and automation scenarios where it is
 not technically feasible to prompt for authentication material. Mutual TLS
 (mTLS� is also prominent for microservice authN and authZ as seen within
 Kubernetes and service mesh. Never rely on mechanisms like basic
 authentication or digest authentication. Attacks against these older
 authentication mechanisms are well documented, and they are trivial for
 attackers to defeat.

 Salt I API Security Best Practices I 21

 3. Don’t rely on API keys as authentication: API keys are commonplace in the
 world of APIs, and they are seen frequently as a means of connecting
 partners, connecting client apps to back-end APIs, and enabling machine to
 machine (or direct API� communication. API keys are easily harvested by
 attackers through reverse engineering client-side code and sniffing network
 traffic if keys traverse unprotected networks and the Internet. API keys
 alone are not a sufficient form of authentication and should be used
 primarily as a form of version control. If you rely on API keys, ensure that
 you monitor consumption, generate new API keys, and revoke old API keys
 or API keys of malicious consumers appropriately. Realistically, API keys
 should be paired with additional authentication factors such as certificates
 or other authentication material.

 4. Set reasonable idle and max session timeouts: idle session timeout
 controls how long a given session with the back-end can stay live without
 receiving requests from the client until a user or machine is required to
 re-authenticate. Max session timeouts control the total time a session can
 be live with the back-end regardless of whether the session is active or idle.
 Idle session timeout recommendations range anywhere from 5 to 30
 minutes depending on exposure of the API, business criticality, and data
 sensitivity. Max session timeouts are usually in the range of a few hours or
 days. Some organizations opt for shorter session lifetimes, but such an
 approach requires a trade-off with UX since you will be forcing users to
 re-authenticate more frequently. You must consider these lifetimes for all
 session identifiers, authentication tokens, and refresh tokens throughout
 the technology stack. The intent of controlling session timeouts is to reduce
 the time window for attackers to steal session identifiers and hijack
 authenticated sessions. Active session identifiers and authentication tokens
 are just as valuable to an attacker as an original credential and can easily be
 used to obtain access to API and data.

 5. Weigh the pros and cons of session binding: binding IP addresses of API
 consumers to session cookies and authentication tokens can provide some
 security benefit. If a bound session identifier or authentication token is
 stolen by an attacker, and the attacker attempts to reuse that authenticated
 session from another machine with a different IP address, the API request
 will be blocked since the request isn’t coming from the original IP address.
 Session binding has an unintended side effect of limiting mobility. If a given
 API consumer uses multiple machines or mobile devices normally, they can
 be forced to authenticate excessively which becomes damaging to UX.

 6. Use additional secrets in authorization flows and nonces in requests:
 adding additional secrets in authentication flows helps reduce the risk of
 token interception and replay attacks. OAuth2 provides this type of

 Salt I API Security Best Practices I 22

 protection with proof key for code exchange �PKCE� . If you are using OAuth
 for authentication in your mobile app, consider employing PKCE to mitigate
 the risk of token interception and replay attacks. PKCE is also slated to
 become mandatory in OAuth 2.1 . Using nonces in requests also helps
 reduce the risk of message replay attacks and cross-site request forgery
 �CSRF� attacks. You can also use one of the many implementations of
 anti-CSRF mechanisms within code libraries and frameworks. It’s often
 simply a matter of ensuring you’ve enabled the mechanism.

 Runtime protection

 The top 3 recommendations for runtime protection include:

 1. Enable threat protection features of your API gateways and APIM if available
 2. Ensure that DoS and DDoS mitigation is part of your API protection approach
 3. Go beyond traditional runtime controls that are dependent on rules, and make

 use of AI/ML and behavior analysis engines to detect API attacks

 Runtime protection, sometimes referred to as threat
 protection, is often delivered through network-based proxies
 like API gateways and WAFs. These mechanisms typically
 rely on message filters and static signatures, which can
 catch some types of attacks that follow well-defined
 patterns but miss most forms of API abuse. Any runtime
 protection you consider deploying should be much more
 dynamic and learn continuously. Runtime protections may
 use signatures for well-known and well-defined attack
 patterns, such as presence of malicious characters that
 indicate injection attack attempts. Runtime protections
 should encompass more than just message inspection and
 filtering though. Protections should be useful for identifying
 misconfigurations in API infrastructure as well as behavior
 anomalies like credential stuffing, brute forcing or scraping
 attempts by attackers.

 Best practices for runtime protection include:

 1. Look beyond traditional security controls and attack signatures: most
 organizations have a presence of traditional runtime security controls
 including such as intrusion prevention systems �IPS�, next-gen firewalls
 �NGFW�, or web application firewalls �WAF�. IPS and NGFW try to cover a
 broad range of protocols and attacks, not just web traffic, which limits their
 efficacy for APIs. Of these traditional controls, WAF is the most

 Salt I API Security Best Practices I 23

 purpose-built for web application and API traffic, but WAFs were designed
 in a time when web applications were largely static. As design patterns
 evolved and applications became more dynamic and API-centric, some
 vendors began including signatures and rules to cover APIs. However, such
 rules are based on per-transaction analysis and pattern matching, and rules
 are typically too generic to cover the unique business logic that most
 organizations build into their APIs. Use IPS, NGFW, and WAF if you must, but
 expect a low-bar of protection that mainly covers common injection attacks
 like XSS and SQLi. JSONi and XMLi may be covered, but it is not a given and
 could fall to your API gateway. You must also ensure that they support the
 API protocols in use in your organization. If a WAF only supports SOAP APIs,
 and you’re creating REST APIs, it’s useless as an API protection. Ultimately,
 your runtime protection approach should go beyond these traditional
 technologies and make use of AI/ML and behavior analysis to detect API
 attacks.

 2. Use threat protection features of your API gateways and APIM if available:
 similar to WAFs since they are both network-based proxies, ensure that you
 are enabling the threat protection rules and message filters within your API
 mediation technologies. It’s still a low bar for API protection, but it is more
 API-focused than WAF. Unlike WAFs however, these rules are likely not as
 well maintained by the vendor. Signature updates are relatively rare. To be
 effective, they also likely require tuning based on a given API schema to
 control allowable parameter values within API requests. Because this
 approach is difficult to scale operationally, organizations will sometimes
 leave threat protection mechanisms with default settings or disabled
 entirely.

 3. Don’t rely on rate limiting and traffic management to stop attacks:
 organizations that attempt to operationalize rate limits inevitably hit a wall,
 particularly for customer APIs that are Internet-facing. Proxying all traffic
 and examining each transaction in isolation, it’s impossible for the
 network-based controls that implement rate limits to understand behaviors
 and intent of the API consumer and provide context. Attackers regularly
 throttle their attack requests to evade rate limits, and rate limiting is a
 relatively low bar to API security. Like “the club” that was one marketed
 heavily as a theft deterrent device, they might slow down a less-skilled
 attacker, but such approaches only delay the inevitable. If you are
 depending on rate limiting, make sure that you are pairing it with traffic
 analysis and anomaly detection so that rate limits can be set much more
 dynamically and adjusted per requester.

 Salt I API Security Best Practices I 24

 4. Plan for denial of service �DoS� attacks against exposed APIs: attackers
 will use DoS and distributed DoS �DDoS� attack techniques to reduce
 availability in your APIs. Traditionally, protections are sought for volumetric,
 protocol, or application-layer attacks. DDoS mitigation services and cloud
 scrubbing services might address volumetric and protocol forms of DoS but
 can leave application-layer exposed. For vendors that claim to cover
 application-layer, ensure that they are able to parse API context. API
 parameters are highly unique per organization, based on the business logic
 they create and how they integrate other services. Parameters within API
 requests vary greatly from one organization’s architecture to the next,
 making application-layer DoS for APIs very nuanced.

 5. Explore behavior analysis and anomaly detection: as organizations
 embrace APIs more rapidly, they quickly realize the need for
 machine-driven data analytics and behavior analysis to understand normal
 API consumption and identify attackers abusing APIs. The algorithms must
 be informed by API metadata as well as API traffic collection, continuously
 learn, and make decisions dynamically based on the organization’s unique
 business logic. Machine-driven detection and protection should also be
 built into a larger platform of services and integration so that an appropriate
 mitigating action, such as setting a dynamic rate limit for an abusive
 requester, can be implemented temporarily at the appropriate network
 ingress of the overall architecture. Even mature organizations with
 development resources and data scientists quickly hit a wall trying to
 develop such detection and integration. You will inevitably need to explore
 API security tooling to fill this gap.

 Security operations

 The top 3 recommendations for security operations include:

 1. Account for the non-security and security personas involved in the complete
 API stack

 2. Create API-centric incident response playbooks
 3. Spare your SOC from burnout by surfacing actionable API events and not

 dumping data

 Security operations, or SecOps, capabilities in organizations can be a mixed bag.
 SOC analysts that are full stack are in very short supply, much like the illusive full
 stack DevOps or DevSecOps engineer. Specializations in technology stacks and
 understanding of attack pattern specifics are inevitable if not necessary. This
 reality of the modern SOC increases the need for collaboration within the SOC but
 also with other teams within the organization. SOC analysts must often depend on

 Salt I API Security Best Practices I 25

 application development and API protect teams who best know the application
 architecture and logic of APIs, which becomes critical in digital forensics and
 incident response. SOCs may also be outsourced to third parties, as in the case of
 managed security service providers and virtual SOCs, which can further complicate
 workflow, data feeds, and integration. You will need to emphasize the people and
 process aspects of SecOps more than technology, and don’t just approach the
 exercise as “getting a feed into Splunk.”

 Best practices for security operations include:

 1. Account for multiple personas and work streams in the organization:
 non-security and security teams don’t need to see all API event data, which
 stresses the importance of role-based access control within an API security
 offering itself. Some data may be privileged or be bound by regulatory
 restriction. In other cases, providing too much data can lead to information
 overload and slow down regular work. Provide teams the appropriate
 API-related data that they need to do their job, and provide it within the
 tooling they use as part of their daily routine to avoid disruption. As an
 example, infrastructure teams may only care about event data related to
 load balancer misconfigurations, product teams may be concerned with
 APIM policy misconfigurations, and development teams may only be
 concerned with code-level vulnerabilities.

 2. Create API-centric incident response playbooks: ensure that you
 document digital forensics and incident response �DFIR� processes for how
 to respond to the inevitable API attack patterns. If you’ve already matured
 your SecOps strategy to include the use of security orchestration,
 automation and response �SOAR�, then also automate some of the workflow
 items as part of IR. Shutting down an API that is the target of malicious
 activity is rarely a prudent business decision, not to mention it reduces your
 ability to gain additional intelligence about an attacker and their techniques.
 Rather than blocking traffic wholesale, you will likely want to employ more
 precision such as throttling just the suspicious API caller, challenging them
 with additional authenticator factors, or monitoring their behavior more
 heavily. Create IR playbooks for common API attack patterns including
 application-layer DoS, brute forcing, credential stuffing, enumeration, and
 scraping.

 3. Surface actionable API events, don’t just dump data into SIEM� you should
 consider the funnels of data being ingested into your SIEM from the
 specialized tooling that is used across the organization. Assign priority
 levels based on risk-scoring and correlate events to produce useful signals.
 Realistically, this level of analysis and prioritization requires a Big Data
 approach, with cloud-scale storage and use of AI/ML to analyze the data at

 Salt I API Security Best Practices I 26

 scale. Too often, organizations dump all their log and event data into their
 SIEM only to find that the SIEM can’t keep up or can’t provide meaningful,
 actionable signals. SOC teams quickly get overwhelmed as a result. In some
 cases, cybersecurity efforts actually focus on reducing the number of feeds
 into the organization’s SIEM so that the SOC can be more effective in their
 job of triaging and responding to security events.

 Summing up the best practices

 Enabling API security covers more than then areas of focus, and each is arguably
 just as critical as the next. You may opt to emphasize sets of best practices where
 they already have technology investments or manpower. Frequently for
 organizations, their API security strategy focuses heavily on security testing, API
 mediation, or network security. You can’t do everything at once, so where do you
 start? Some suggestions on how to scope the problem and prioritize activities
 include:

 ● Do security test your APIs, but know that you will also need runtime
 protection to catch changes that don’t go through standard build process
 and abuses that testing tools aren’t designed to find.

 ● Ensure that you are covering all of your environments and your digital
 supply chain, which is more than just the APIs mediated by your API
 gateways or API management suite.

 ● If you do nothing else, focus on runtime protection as a way to “stop the
 bleeding,” slow down attackers, and buy time for application and API teams.

 To avoid being overwhelmed, pick a few best practices areas as a starting point
 that are most familiar. Expand over time the other sets of best practices since any
 other approach will leave gaps in your API security strategy. Ideally, you should
 consider purpose-built API security tooling that addresses the many elements of
 API security. API security tooling should be able to offer a range of capabilities
 throughout the lifecycle and provide the necessary context to stop attacks and
 data exposures for your organization’s unique API business logic.

 Salt I API Security Best Practices I 27

 External resources

 Topic Area Domain Organization Link

 API security Secure design CSA Security Guidelines for Providing
 and Consuming
 APIs | CSA

 Credential stuffing Authentication and
 authorization

 OWASP OWASP Credential Stuffing
 Prevention Cheat Sheet

 GraphQL API protocols and data
 formats

 OWASP OWASP GraphQL Security Cheat
 Sheet

 Incident response Security Operations NIST Computer Security Incident
 Handling Guide

 Injection Input validation and
 filtering

 OWASP OWASP Injection Prevention Cheat
 Sheet

 OWASP SQL Injection Prevention
 Cheat Sheet

 JSON Web Token
 �JWT�

 Authentication and
 authorization

 OWASP OWASP JWT Cheat Sheet for Java

 Mass assignment Input validation and
 filtering

 OWASP OWASP Mass Assignment Cheat
 Sheet

 Microservices and API
 security

 Security architecture NIST Security Strategies for
 Microservices-based Application
 Systems

 Microservice security Security architecture OWASP OWASP Microservices Security
 Cheat Sheet

 Mobile app and API
 security

 Security verification NIST Vetting the Security of Mobile
 Applications

 Salt I API Security Best Practices I 28

 Mobile app security Security verification OWASP OWASP Mobile Security Testing
 Guide

 Redirects and
 forwarding

 Input validation and
 filtering

 OWASP OWASP Redirects and Forwards
 Cheat Sheet

 REST API protocols and data
 formats

 OWASP OWASP REST Assessment Cheat
 Sheet

 OWASP REST Security Cheat Sheet

 Server-side request
 forgery �SSRF�

 Input validation and
 filtering

 OWASP OWASP SSRF Prevention Cheat
 Sheet

 Threat modeling Secure design OWASP OWASP Abuse Case Cheat Sheet

 Threat Modeling Manifesto

 Web services API protocols and data
 formats

 OWASP OWASP Web Service Security
 Cheat Sheet

 XML API protocols and data
 formats

 OWASP OWASP XML Security Cheat Sheet

 OWASP XML External Entity
 Injection Prevention Cheat Sheet

 Salt Security – Securing your innovation

 Salt Security protects the APIs that form the core of every modern application. Its patented API Protection Platform is
 the only API security solution that combines the power of cloud-scale big data and time-tested ML/AI to detect and
 prevent API attacks. By correlating activities across millions of APIs and users over time, Salt delivers deep context with
 real-time analysis and continuous insights for API discovery, attack prevention, and shift-left practices. Deployed in
 minutes and seamlessly integrated within existing systems, the Salt platform gives customers immediate value and
 protection, so they can innovate with confidence and accelerate their digital transformation initiatives.

 Request a Demo today!
 info@salt.security
 www.salt.security

 WP�235�092622

 Salt I API Security Best Practices I 29

 Securing your
 Innovation.

